001     865531
005     20240313095022.0
037 _ _ |a FZJ-2019-04915
100 1 _ |a Pauli, Robin
|0 P:(DE-Juel1)166067
|b 0
|u fzj
111 2 _ |a Bernstein Conference 2019
|c Berlin
|d 2019-09-17 - 2019-09-20
|w Germany
245 _ _ |a Localization of coherent activity based on multi-electrode local field potentials
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1570532845_4405
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established method for the suppression of motor deficits in Parkinson's disease. The efficacy and the extent of side effects of DBS depend critically on the positioning of the stimulation electrode. In particular with the increased use of directional DBS, it is becoming more difficult to find optimal stimulation parameters. A major challenge during the positioning of DBS electrodes is the detection of hotspots associated with the generation of pathological coherent activity. Here, we develop and test a method aiming at localizing confined regions of coherent activity based on the local field potential (LFP) recorded with multiple electrodes (see figure). Our approach involves two steps, the identification of coherent sources by independent-component analysis of the multi-channel recordings in Fourier space, and the localization of identified sources by means of current-source-density analysis. We benchmark this technique for a range of source sizes and source-electrode distances based on synthetic ground-truth data generated by multicompartment models of STN neurons with realistic morphology. In this framework, we show that the spatio-temporal structure of the LFP recorded with multiple electrodes can be exploited to achieve a localization precision exceeding the spatial resolution of the electrode configuration. The proposed method permits a continuous tracking of source positions and may therefore provide a tool to study the spatio-temporal organization of pathological activity in STN. Moreover, it could serve as an intra-operative guide for the positioning of DBS electrodes and thereby improve and speed up the implantation process and the adjustment of stimulus parameters.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 0
|f POF III
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|x 1
|f POF III
536 _ _ |a DFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)
|0 G:(GEPRIS)233510988
|c 233510988
|x 2
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 3
|f H2020-Adhoc-2014-20
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 4
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|x 5
|f Advanced Computing Architectures
536 _ _ |a W2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)
|0 G:(DE-HGF)B1175.01.12
|c B1175.01.12
|x 6
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 7
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 1
|u fzj
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 2
|e Corresponding author
|u fzj
909 C O |o oai:juser.fz-juelich.de:865531
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166067
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145211
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21