000865532 001__ 865532
000865532 005__ 20240313095023.0
000865532 037__ $$aFZJ-2019-04916
000865532 1001_ $$0P:(DE-Juel1)166067$$aPauli, Robin$$b0$$eCorresponding author
000865532 1112_ $$aBernstein Conference 2019$$cBerlin$$d2019-09-17 - 2019-09-20$$wGermany
000865532 245__ $$aLocalization of coherent activity based on multi-electrode local field potentials
000865532 260__ $$c2019
000865532 3367_ $$033$$2EndNote$$aConference Paper
000865532 3367_ $$2BibTeX$$aINPROCEEDINGS
000865532 3367_ $$2DRIVER$$aconferenceObject
000865532 3367_ $$2ORCID$$aCONFERENCE_POSTER
000865532 3367_ $$2DataCite$$aOutput Types/Conference Poster
000865532 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1570539164_4405$$xAfter Call
000865532 520__ $$aDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established method for the suppression of motor deficits in Parkinson's disease. The efficacy and the extent of side effects of DBS depend critically on the positioning of the stimulation electrode. In particular with the increased use of directional DBS, it is becoming more difficult to find optimal stimulation parameters. A major challenge during the positioning of DBS electrodes is the detection of hotspots associated with the generation of pathological coherent activity. Here, we develop and test a method aiming at localizing confined regions of coherent activity based on the local field potential (LFP) recorded with multiple electrodes (see figure). Our approach involves two steps, the identification of coherent sources by independent-component analysis of the multi-channel recordings in Fourier space, and the localization of identified sources by means of current-source-density analysis. We benchmark this technique for a range of source sizes and source-electrode distances based on synthetic ground-truth data generated by multicompartment models of STN neurons with realistic morphology. In this framework, we show that the spatio-temporal structure of the LFP recorded with multiple electrodes can be exploited to achieve a localization precision exceeding the spatial resolution of the electrode configuration. The proposed method permits a continuous tracking of source positions and may therefore provide a tool to study the spatio-temporal organization of pathological activity in STN. Moreover, it could serve as an intra-operative guide for the positioning of DBS electrodes and thereby improve and speed up the implantation process and the adjustment of stimulus parameters.
000865532 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000865532 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x1
000865532 536__ $$0G:(GEPRIS)233510988$$aDFG project 233510988 - Mathematische Modellierung der Entstehung und Suppression pathologischer Aktivitätszustände in den Basalganglien-Kortex-Schleifen (233510988)$$c233510988$$x2
000865532 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000865532 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000865532 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x5
000865532 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x6
000865532 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b1
000865532 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b2$$eCorresponding author
000865532 909CO $$ooai:juser.fz-juelich.de:865532$$pec_fundedresources$$pVDB$$popenaire
000865532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166067$$aForschungszentrum Jülich$$b0$$kFZJ
000865532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b1$$kFZJ
000865532 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b2$$kFZJ
000865532 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000865532 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1
000865532 9141_ $$y2019
000865532 920__ $$lno
000865532 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000865532 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000865532 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000865532 980__ $$aposter
000865532 980__ $$aVDB
000865532 980__ $$aI:(DE-Juel1)INM-6-20090406
000865532 980__ $$aI:(DE-Juel1)IAS-6-20130828
000865532 980__ $$aI:(DE-Juel1)INM-10-20170113
000865532 980__ $$aUNRESTRICTED
000865532 981__ $$aI:(DE-Juel1)IAS-6-20130828