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Abstract. Wind energy has seen large deployment and substantial cost reductions over the last decades. Fur-

ther ambitious upscaling is urgently needed to keep the goals of the Paris Agreement within reach. While the

variability in wind power generation poses a challenge to grid integration, much progress in quantifying, under-

standing and managing it has been made over the last years. Despite this progress, relevant modes of variability

in energy generation have been overlooked. Based on long-term reanalyses of the 20th century, we demonstrate

that multidecadal wind variability has significant impact on wind energy generation in Germany. These modes

of variability can not be detected in modern reanalyses that are typically used for energy applications because

modern reanalyses are too short (around 40 years of data). We show that energy generation over a 20-year

wind park lifetime varies by around ±5 % and the summer-to-winter ratio varies by around ±15 %. Moreover,

ERA-Interim-based annual and winter generations are biased high as the period 1979–2010 overlaps with a mul-

tidecadal maximum of wind energy generation. The induced variations in wind park lifetime revenues are on the

order of 10 % with direct implications for profitability. Our results suggest rethinking energy system design as

an ongoing and dynamic process. Revenues and seasonalities change on a multidecadal timescale, and so does

the optimum energy system layout.

1 Introduction

Wind energy is on the rise. Following a period of high subsi-

dies, drops in wind energy costs have been dramatic. In some

places, onshore wind energy outperforms all other types of

power generation in terms of levelized costs of electricity

(IEA/IRENA, 2017). This economic development, in con-

junction with the necessity to eliminate carbon emissions

from the electricity sector in the next decades (Schleussner

et al., 2016; Rogelj et al., 2015), will most certainly lead to

substantial investments in wind energy.

Wind parks are costly long-term investments. Since 2000,

almost EUR 95 billion has been invested in wind parks in

Germany (BMWi, 2018). Compared to current stock ex-

change values, this figure is higher than the value of Volk-

swagen and only marginally lower than that of Germany’s

most valuable company SAP (PWC, 2018). While plan-

ning is typically based on 20-year lifetimes, real-world ex-

periences suggest that turbines can be operated even longer

(Ziegler et al., 2018). The current German market design

privileges renewables over conventional generators via a

guaranteed feed-in, and wind park operators are compensated

for congestion-related curtailment. This implies that there

is no market incentive for planners to increase the system-

friendliness of their wind parks. In particular in cases where a

trade-off has to be made between total energy generation and

system-friendliness, planners and investors will likely prefer

the former over the latter.

Wind power generation is variable, which complicates its

integration into power systems. This fact is increasingly ac-

counted for in energy system models (a recent overview is
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provided by Ringkjøb et al., 2018). Portfolios of different re-

newables and large-scale transmission can mitigate genera-

tion variability (e.g., Heide et al., 2011; Schlachtberger et al.,

2017). Underlying wind generation time series are typically

based on modern reanalysis (e.g., Gonzalez Aparcio et al.,

2016; Staffell and Pfenninger, 2016; Moraes et al., 2018).

These time series cover around 40 years as the observations

that they rely on became available in the late 1970s. Many

characteristics of renewable generation variability, such as

monthly, seasonal and even decadal variability can be inves-

tigated using these datasets. But are 40 years sufficient to

capture all relevant modes of wind variability?

Some components of the climate system vary on very long

timescales and interactions can give rise to low-frequency

variability in atmospheric processes. For example, the North

Atlantic Oscillation (NAO) has a low-frequency component

that is linked to ocean and stratospheric variability (Omrani

et al., 2016). The NAO has also been shown to impact the

British wind sector (Brayshaw et al., 2011; Ely et al., 2013)

and solar generation in Iberia (Jerez et al., 2013). These links

suggest that renewable power systems could be affected by

low-frequency climate variability. While much attention has

been given to the impacts of climate change on renewable

power systems (e.g., Pryor and Barthelmie, 2010; Reyers

et al., 2016; Tobin et al., 2016; Wohland et al., 2017; We-

ber et al., 2018; Schlott et al., 2018; Karnauskas et al., 2018;

Jerez et al., 2019), little emphasis has been put on the natural

low-frequency variability in wind energy (with the notable

exception of Bett et al., 2013, 2017). Natural low-frequency

variability could also help to explain trends in surface wind

speeds computed over a few decades (commonly referred to

as global stilling; Vautard et al., 2010) if the period featuring

the trend coincides with the downward-sloping fraction of

multidecadal variability. The fact that climate change assess-

ments unanimously report relatively small-to-negligible im-

pacts of climate change in Europe does not necessarily imply

that natural variability is insignificant because climate mod-

els exhibit major discrepancies in simulating low-frequency

climate variability (e.g., Ba et al., 2014).

In this study, we investigate the long-term evolution of

wind energy generation in Germany. We aim to verify if there

are relevant modes of variability on timescales of multiple

decades. If these modes exist, it is crucially important to in-

corporate them into long-term decision-making with regard

to the design and operation of future power systems. More-

over, they would not only matter on a system level but also

affect individual investments.

2 Methods and data

Our focus is on the effect of long-term natural climate vari-

ability on wind power generation. To isolate the imprint of

the climate, we neglect potential changes in technology and

deployment of wind parks. Specifically, we freeze the current

configuration of wind parks and compute their theoretical en-

ergy generation over the 20th century. This approach allows

us to quantify the importance of climate-driven multidecadal

variability in wind energy in Germany.

We derive nationally aggregated wind generation time se-

ries for the period 1901–2010 following the procedure de-

tailed in Wohland et al. (2018). In short, the method consists

of vertical extrapolation of 10 m wind speeds to 80 m hub

height using a power law followed by the application of a

standard turbine power curve at each grid point and finally

a multiplication with the installed capacities (from OPSD,

2017). Projections of the installed capacities onto the grids

of the 20th century reanalyses are shown in Fig. 1.

2.1 Twentieth century reanalyses

Wind speeds come from the full set of current 20th cen-

tury reanalyses and are provided by two different centers:

the European Centre for Medium-Range Weather Forecasts

(ECMWF) and the National Oceanic and Atmospheric Ad-

ministration (NOAA) from the USA. NOAA provided the

first 20th century reanalysis named 20CR (Compo et al.,

2011). 20CR is an atmospheric reanalysis that assimilates

sea-level pressure observations only. In this study, we use the

ensemble mean wind speeds from version 20CRv2c, which

has 58 ensemble members. ECMWF followed a different ap-

proach and assimilates both sea-level pressure and marine

wind observations. This difference in approaches yields sub-

stantial disagreement with respect to long-term wind speed

trends (Wohland et al., 2019) but, as we show, there is

large agreement regarding seasonal to multidecadal vari-

ability after subtraction of the linear trends. ECMWF pro-

vides an atmosphere (ERA20C; Poli et al., 2016) and a cou-

pled atmosphere–ocean 20th century reanalysis (CERA20C;

Laloyaux et al., 2018). ERA20C is deterministic (i.e., has

only 1 member) and CERA20C comes with a 10-member

ensemble. Unless otherwise stated, we report the CERA20C

ensemble mean as the spread is usually very limited. Our

analysis is based on 10 m wind speeds. In contrast to higher-

altitude wind speeds, they are available for all 20th century

reanalyses allowing us to apply the same methodology to all

datasets and thereby ensuring comparability. We validate the

approach in Sect. 3.

The longer temporal coverage comes at the cost of reduced

spatial resolution as compared with modern reanalyses such

as ERAINT (Dee et al., 2011), MERRA/MERRA2 (Rie-

necker et al., 2011) or ERA5 (Hennermann, 2018). ERA20C

and CERA20C have a spatial resolution of 1.125◦ × 1.125◦

and the 20CR resolution is even coarser (1.875◦ × 1.875◦).

While the datasets are thus clearly not well suited for

site-specific assessments, they are sufficiently detailed for

country-level assessments (see also Fig. 1). Temporal reso-

lution is 3 h for all datasets and hence allows us to capture

intraday effects.

Wind Energ. Sci., 4, 515–526, 2019 www.wind-energ-sci.net/4/515/2019/



J. Wohland et al.: Multidecadal wind energy variability 517

Figure 1. Allocation of turbines based on the Open Power System Data for the end of 2016 (OPSD, 2017). Data are projected on the

ERA20C/CERA20C grid (a) and the 20CR grid (b).

2.2 Trend removal and timescale of interest

There is a demonstrated disagreement in the 20th century

reanalyses in terms of wind speed trends, which originate

from the assimilation of marine winds by ECMWF (Wohland

et al., 2019). We thus remove the long-term (1901–2010)

trends by subtraction of the zero-mean trend that is obtained

via least-squares fitting of a linear fit function and subsequent

subtraction of the trends mean:

G(t) = Graw(t) − (Gtrend(t) − 〈Gtrend(t)〉) , (1)

where Graw(t) denotes the raw annual or seasonal time se-

ries, Gtrend(t) denotes the linear fit and 〈Gtrend(t)〉 is its mean

value.

We focus on the long-term evolution of 20-year generation

averages because 20 years is a typical lifetime for wind parks.

Moreover, the averaging smooths the pronounced interannual

variability, which has already been extensively studied else-

where. Both energy system planning and wind park invest-

ment are forward procedures in the sense that infrastructure

built today will be operated under the weather conditions of

the future. We therefore decided to compute 20-year forward

running means of wind power generation G20 as

G20(t) =
1

20

t+20 yr
∑

t ′=t

G(t ′), (2)

where G(t ′) denotes the annual wind power generation in

year t ′. To study the evolution in different seasons (winter

DJF, spring MAM, summer JJA, autumn SON), we similarly

compute the seasonal 20-year means as

Gseason
20 (t) =

1

20

t+20 yr
∑

t ′=t

G(t ′)season, (3)

where G(t ′)season denotes the wind power generation in the

respective season of year t ′. Note that G20(t) and Gseason
20 (t)

are ill defined at the end of the dataset when 20 years are not

available. We thus only compute them up to 1990. We gen-

erally report normalized lifetime generation or normalized

seasonal lifetime generation, which is obtained by division

of G20(t) or Gseason
20 (t) with the 1901–2010 mean 〈G(t)〉 or

〈G(t)〉season, respectively.

2.2.1 Seasonality

In addition to seasonal generation averages, we report the

seasonality S, which we define as the ratio of normalized

winter to summer generation:

S(t) =
GDJF

20 (t)

〈G〉DJF

/

GJJA
20 (t)

〈G〉JJA
. (4)

Seasonality is an important metric for power system design

and has a large influence on optimum technology mixes (e.g.,

Heide et al., 2010). In Germany, wind power generation is

generally higher in autumn and winter than in spring and

summer. To ensure stable operation of the power system (i.e.,

a balance of generation and demand at all time steps), season-

ality has to be accounted for in power system design. For ex-

ample, the dimensioning of storage or backup infrastructure

and optimum wind to solar mixes depend on the seasonal-

ity. For completeness, we provide an extended definition of

seasonality Ŝ, which also includes autumn and spring as

ˆS(t) =
GSON+DJF

20 (t)

〈G〉SON+DJF

/

GMAM+JJA
20 (t)

〈G〉MAM+JJA
. (5)

2.2.2 Bias

We use the term bias to assess whether the period covered by

ERAINT is representative for the longer period covered by
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the 20th century reanalyses. For example, if the seasonality

over 1979–2010 is higher than over 1900–2010, we call the

seasonality estimates of modern reanalyses biased high.

2.3 Multitaper spectral estimation

We test significance of low-frequency components in the an-

nual and seasonal wind generation time series using the mul-

titaper method (MTM; Ghil, 2002). Classical approaches,

such as Fourier spectral analysis, suffer from spectral leakage

when applied to relatively short time series, hindering reli-

able assessments. MTM provides an alternative in that it cal-

culates tapers that are designed to minimize leakage. We use

K = 3 tapers with a bandwidth of p = 2 years as suggested

by Ghil (2002) for a comparable time series. Eigentapers are

weighted based on their eigenvalues and the computation is

performed via the Python package spectrum (Cokelaer and

Hasch, 2017).

Significance testing is based on the null hypothesis of red

noise. The underlying process that creates a red-noise spec-

trum is referred to as a autoregressive model of first order

or AR(1). The parameters of the red-noise spectrum, SR(f ),

are fitted to minimize the mismatch between the median

smoothed real and the red-noise spectrum (as suggested by

Ghil, 2002; Mann and Lees, 1996). A peak in the real spec-

trum S(f ) at frequency f ′ is considered significant at the

90 % level if

S(f ′) > SR(f ′) · χ2(90 %,2K), (6)

again following (Ghil, 2002). χ2(90 %,2K) denotes the chi-

squared distribution with 2 K degrees of freedom at a 90 %

confidence level. White noise is a special case of red noise

and is characterized by a constant spectrum (i.e., SW(f ) =

S0, where S0 is a real positive number). White noise is gen-

erated by an autoregressive model of zeroth order, AR(0).

2.4 Impacts on investments

In an investment decision, the installation and operational

costs of an asset have to be compared with expected rev-

enues. Taking into account risks and alternative investments,

an investment is made if the expected revenues exceed the

total costs by some amount. The expected revenue may be

substantially flawed if it is based on only a couple of years of

wind data. In contrast, decision makers that are aware of all

modes of wind variability gain an advantage through more

reliable revenue estimates.

To quantify this impact of low-frequency wind variability

on wind park investments, we calculate the discounted life-

time cash inflows as

Cin(t) = c ·

t+τ
∑

t ′=t

1

(1 + γ + 1η)t
′−t

G(t ′), (7)

where γ = 5.5 % yr−1 is the discount rate, 1η ≈ 1.5 % yr−1

accounts for the decline in turbine performance (Staffell and

Green, 2014), τ = 20 years is the conservatively assumed

lifetime, c is the revenue per generated unit of electricity and

G is wind power generation. We set c to be constant because

the German system is still designed to guarantee prices for

wind park operators. Prior to the recent shift towards auc-

tions, the price was determined politically. Since the latest

reform of the renewable energy act in 2017, the price is de-

termined via auctions but is still guaranteed over 20 years

(BMWi, 2017). Both for old and new wind parks it is thus

justified to use constant prices, albeit the price will differ de-

pending on the date of construction and the auction outcome.

2.5 North Atlantic Oscillation

To gain more insight into the coevolution of wind genera-

tion variability and the general circulation of the atmosphere,

we include the North Atlantic Oscillation (NAO). The NAO

is the leading pattern of climate variability in the North At-

lantic sector affecting weather and climate over Europe, par-

ticularly in winter (Marshall et al., 2001). It is here defined

as the first principle component of sea-level pressure over the

area 20–80◦ N and 90◦ W–40◦ E as detailed in Omrani et al.

(2016). Our NAO index is computed from sea-level pressure

data from the Hadley Center (Rayner, 2003) over the winter

months December, January and February.

3 Validation

In a recent study, we have shown that ERAINT has skill

to reproduce reported wind power generation in Germany

(Wohland et al., 2018). It thus appears logical to test the

20th century reanalyses by comparison with ERAINT over

the overlapping period (1979–2009). We also add the widely

used Renewables.ninja wind energy dataset that is based on

MERRA2 (Staffell and Pfenninger, 2016).

The evolution of the normalized lifetime mean generation

is similar for all reanalyses under consideration (see Fig. 2a).

All start with a period of high values that is followed by

roughly 5 years of low values. Towards the end, the normal-

ized lifetime generation recovers but not to the same levels

as in the first couple of years.

On a finer temporal scale, there are good correlations be-

tween the daily generations based on ERAINT and 20CR

and ERA20C and CERA20C (see Fig. 2b–d). 20CR over-

estimates daily generation (slope < 1 in Fig. 2b). In con-

trast, ERA20C and CERA20C underestimate daily genera-

tion (slopes > 1 in Fig. 2c, d). This systematic over- or un-

derestimation of daily wind generations, however, is of mi-

nor importance in this study because it is reduced by nor-

malization with the long-term mean. All 20th century re-

analyses agree well with ERAINT for very high daily gen-

erations larger than around 40 GW. Pearson correlation is

high for 20CR (r = 0.92) and even higher for the ECMWF

products (r = 0.98). A similar result is found for the RMSE,

which is 4.3 GW for 20CR and around 1.3 GW for ERA20C
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Figure 2. German wind power generation from modern reanalyses (ERAINT, MERRA2) and 20th century reanalyses (20CR, ERA20C,

CERA20C) for period of overlap. (a) Normalized lifetime generation (i.e., the reported value for 1990 is the average wind power generation

of the years 1990–2009 normalized with the long-term mean). “Renewables.ninja” is an openly available generation dataset that is based on

MERRA2. (b–d) Scatter plots of daily generation from ERAINT versus daily values from 20CR (b), ERA20C (c) and CERA20C (d) for the

30-year period from 1979 to 2009. The Pearson correlation coefficient, r , between the daily data is given in the legends. The data are shown

prior to long-term trend removal, which was performed for the centennial analysis (see Sect. 2).

and CERA20C, again indicating larger agreement across the

ECMWF reanalyses. This larger agreement could be due

to more similar spatial resolutions that allow us to capture

the same processes in (C)ERA20C as in ERAINT. It may

also reflect the common institutional origin as ERAINT and

(C)ERA20C have been developed at ECMWF and are based

on different versions of the same model. In any case, the sub-

stantial agreement in the detrended time series on different

timescales creates confidence in the 20th century reanalyses.

From visual inspection, there also seems to be a down-

ward trend over the period 1979–1990. A trend analysis of

the ERAINT data indeed reveals a significant (at the 99 %

level) downward trend of the normalized lifetime generation,

highlighting the relevance of long-term assessments. How-

ever, this trend should be interpreted cautiously as it is calcu-

lated using only 11 (not independent) values of G20. The re-

mainder of the paper is therefore based on longer time series

to allow more robust assessments of multidecadal variability.

4 Results

4.1 Trends

We find ERA20C and CERA20C to feature statistically

highly significant trends (see Table 1). In both datasets, the

trends are strong: ERA20C reports 28 % higher wind power

generation at the end of the 20th century as compared to its

beginning. The corresponding increase in CERA20C is sub-

stantial (16 % increase in a hundred years) but roughly half

as large. In contrast, there is no significant trend in 20CR.

The existence of these trends comes as no surprise given

strong long-term trends in (C)ERA20C surface wind speeds

over large parts of the world (Wohland et al., 2019). In our

previous publication, we showed that the trends originate

from the assimilated marine wind speeds that also feature

very strong long-term trends. They are likely spurious and

caused by the evolving measurement technique. In addition

to wind speed trends, ERA20C also features trends in marine

sea-level pressure gradients that are not in line with obser-

vations (Bloomfield et al., 2018). All following analyses are

therefore based on detrended time series.
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Table 1. Trend characteristics are shown. Slopes are rounded to in-

teger values and the CERA20C slope corresponds to the mean of the

slopes of the individual ensemble members. Significance is tested

against the null hypothesis of no trend and using a two-sided t test.

For CERA20C, all streams feature significant trends individually.

Slope Significant at

Dataset (% 100 years−1) 99.9 % level?

20CR 0 no

ERA20C 28 yes

CERA20C 16 yes

4.2 Low-frequency variability in normalized lifetime wind

generation

After subtraction of the trends, there is large agreement

among the datasets regarding multidecadal variability in nor-

malized lifetime generation (see Fig. 3). Maxima and min-

ima of annual and seasonal time series coincide for ERA20C,

CERA20C and 20CR. The amplitude of variability is also

comparable among the datasets for all seasons and the an-

nual values. Only in September–October–November (SON)

is there disagreement from 1960 onwards as 20CR reports

values that are 5 % to 10 % off the (C)ERA20C values. Gen-

erally, there is stronger variability in seasonal compared to

annual generation, hinting at compensating effects between

seasons. In June–July–August (JJA), for example, the maxi-

mum to minimum difference is around 15 %. This compares

to 5 % to 10 % maximum to minimum difference for the an-

nual values.

German annual generation is dominated by winter gener-

ation due to generally stronger winds in winter. This win-

ter dependence explains the high similarity between the an-

nual and wintertime series (compare Fig. 3a with c) and also

the high correlation of r = 0.71 between them (see Fig. 3b).

On the timescales considered here, there is also a weak

anticorrelation between the annual and the summer values

(r = −0.39) and between the summer and autumn values

(r = −0.46).

The ratio of winter to summer generation (i.e., seasonality)

is characterized by strong multidecadal variability. While the

maximum 20-year seasonality is between 110 % and almost

120 % (dependent on the dataset), the minimum lies between

80 % and 90 % (see Fig. 3g). If an extended definition of sea-

sonality is applied, the amplitude of the variability is reduced,

but the maximum to minimum difference still ranges around

15 % to 20 % (see Fig. 3h).

In winter there is also a good connection between 20-year

mean anomalies of the North Atlantic Oscillation (NAO)

and normalized lifetime generation as highlighted by cor-

relation coefficients between them that range from r = 0.7

to r = 0.76 for the different datasets (see Fig. 4a). This re-

lation is consistent with the NAO being the dominant pat-

tern of wintertime climate variability in the North Atlantic

sector (Marshall et al., 2001). The agreement is strongest

on multidecadal timescales and it is particularly high since

1960. However, a peak in normalized lifetime wind genera-

tion around mid-century is not paralleled by a similar feature

in the NAO.

Modern reanalyses, such as ERAINT, are too short to cap-

ture these modes of low-frequency variability (see blue ar-

rows in Fig. 3). Unfortunately, ERAINT not only fails to

capture these effects but also provides biased high estimates

in some cases. For example, the seasonality reported by

ERAINT, coincides with above-average values of seasonal-

ity and is hence not representative in general (see Fig. 3g).

The same is true for annual and winter generation. More-

over, ERAINT begins at a time of maximum normalized life-

time wind generation. ERAINT-based trend assessments can

thus misidentify the downward part of reoccurring cycles as

trends (as discussed in Sect. 3). Similarly, the decline of au-

tumn generation since the 1970s could be falsely interpreted

as a trend.

4.3 Spectral analysis

We perform multitaper spectral analysis for detrended an-

nual and seasonal German wind power generation over the

period 1901–2010 (Fig. 5). No prior smoothing or filtering

is applied. A focus is given to the low-frequency part of the

spectrum with frequencies of less than 0.1 yr−1, which cor-

responds to at least 10-year periods. There are statistically

significant low-frequency peaks in all seasons with different

levels of agreement among reanalyses. All reanalyses feature

a significant peak in MAM (f ≈ 0.04 yr−1 or f −1 ≈ 25 yr)

and JJA (f ≈ 0.03 yr−1 or f −1 ≈ 33 yr), and the latter is

also clearly visible in the time series (see Fig. 3e). In SON,

CERA20C and ERA20C report a clearly significant peak

that is also almost significant in 20CR (f ≈ 0.02 yr−1 or

f −1 ≈ 50 yr). In winter there is a spectral peak with a pe-

riod of around 50 years (f ≈ 0.02 yr−1) that is related to the

NAO (see Fig. 4b). This connection to a physical pattern of

climate variability suggests that the peak is not a statistical

artifact, despite its low statistical significance. The generally

high agreement among the reanalyses adds confidence to the

existence of multidecadal periodicities during the historical

period.

Spectral peaks generally do not exist at the same frequen-

cies in different seasons. This implies that the relevant pro-

cesses vary by season. While the winter NAO explains a large

share of the winter variability, similar explanations can cur-

rently not be given for the other seasons.

Interestingly, the AR(1) fit to the median-smoothed spectra

does not reveal red noise but white noise (except for MAM),

in agreement with the understanding of atmospheric variabil-

ity as a process that is white to first order (Wunsch, 1999).

This can be seen by the thin solid lines in Fig. 5, which

display the fitted AR(1) spectra: they are virtually flat, i.e.,

virtually independent of the frequency. For example, in JJA

Wind Energ. Sci., 4, 515–526, 2019 www.wind-energ-sci.net/4/515/2019/
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Figure 3. Normalized lifetime generation from German wind parks. Time series are based on detrended 20th century reanalyses. The panels

show annual (a) and seasonal (c–f) time series. Different versions of the seasonality are also displayed (g–h) and correlations between seasons

are reported for ERA20C (b). The data have been smoothed by application of a running mean 20-year forward filter (i.e., the reported value

for 1900 is the average of the years 1900–1919). The blue arrow highlights the limited coverage of ERAINT.

www.wind-energ-sci.net/4/515/2019/ Wind Energ. Sci., 4, 515–526, 2019
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Figure 4. Relation between normalized lifetime winter generation and the winter North Atlantic Oscillation. Time series of wind power

generation (in red, orange and gray) refer to the left y axis while the NAO time series (in blue) refers to the right y axis (a). Pearson

correlation coefficients, r , are calculated between the 20-year mean NAO anomaly and the 20-year mean DJF wind power generation. MTM

spectrum of the winter NAO (bullets in b), focusing on the low-frequency interval of the spectrum. Solid lines represent the fitted spectrum

of an AR(1) process that is used for significance testing and the dashed lines correspond to the 90 % confidence level (see Sect. 2 for details).

(Fig. 5d), the power of the AR(1) fit is 100 (GWh/GWh)2 for

all frequencies. White noise implies that the system does not

have relevant memory from one year to the next but rather

behaves erratically on year-to-year timescales.

4.4 Relevance for investment decisions

In addition to the relevance of low-frequency variability for

system design, the long lifetime of wind parks makes re-

turns on individual investment susceptible to low-frequency

variability, and not taking this susceptibility into account has

substantial economic implications. The effect is illustrated

in Fig. 6 where the discounted lifetime cash inflow of a

wind park that follows the German mean wind generation is

shown. The values are normalized such that 100 % refers to

the 1901–2010 mean. This graph shows variability in a wind

park’s cash inflow between a maximum of 104 % to 107 %

and a minimum of 95 % to 97 % dependent on the phase of

low-frequency climate variability at the commissioning date.

In other words, a wind park created in 1955 would produce

7 %–12 % less revenue than one created in 1975. Recall that

we abstract from technology innovations throughout the en-

tire article. Dependent on the individual project characteris-

tics, most notably the ratio of the investment to the expected

lifetime cash inflows, a few per cent more or less on the in-

come side can turn an average project into a very profitable

one or might leave a slightly profitable project unprofitable.

Roughly between 1960 and 1975, there was a linear increase

in cash inflows, which has been followed by a decrease since

1980. Assessments based on ERAINT may tend to overesti-

mate discounted lifetime cash inflows as ERAINT coincides

with a period of high wind generation.

5 Discussion and concluding remarks

Based on the full set of current 20th century reanalyses

(20CR, ERA20C, CERA20C), we have shown that mul-

tidecadal variability matters for wind energy in Germany.

There are statistically significant modes of generation vari-

ability on timescales of 25 to 50 years in spring, summer and

autumn. In winter, there is a spectral peak with a period of

around 50 years that is related to the NAO. This connection to

a physical pattern of climate variability suggests that the peak

is not a statistical artifact, despite its low statistical signifi-

cance. Wind power generation reached a multidecadal max-

imum around 1980 implying that trend assessments starting

in 1980 suffer from a sampling bias. The downward sloping

fraction of multidecadal variability should not be confused

with a long-term trend and an extrapolation of the trend into

the future is misleading. These results are relevant in contex-

tualizing suggestions that wind speeds are globally decreas-

ing (Vautard et al., 2010).

Our results imply that in addition to relatively intuitive

timescales (diurnal, seasonal, annual) slower and less intu-

itive modes of variability ought to be included in energy as-

sessments too. While current modern reanalyses are too short

to capture multidecadal wind generation variability, future

products may be better suited due to extended temporal cov-

erage (e.g., ERA5 will start in 1950 and is expected to be

entirely published in late 2019).

One of the most relevant results for power system design is

the variability in seasonality (defined as the ratio of winter to

summer generation here). Far from being constant, 20-year

mean seasonality varies by almost ±15 %. As the seasonal

evolution of generation is one main factor to determine op-
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Figure 5. Spectral analysis of the wind generation time series using the multitaper method (MTM). Panels report annual (a) and seasonal

spectra (b–e). Focus is given to the low-frequency component with frequencies of less than 0.1 yr−1 while the full spectrum is shown in the

inset of each panel. Solid lines represent the fitted spectrum of an AR(1) process that is used for significance testing and the dashed lines

correspond to the 90 % confidence level for each dataset (see Sect. 2 for details).

timum contributions of wind and photovoltaics (Heide et al.,

2010), such optimum shares should also be considered time

series that vary on timescales of 50 years or so. This variabil-

ity calls for an ongoing and dynamic redesign of power sys-

tems to follow climate variability. Even though the lifetime

of individual power system components (e.g., transmission

lines or power plants) is very long, additions, replacements

and retirements occur frequently within the entire power sys-

tem. These events theoretically allow for adaptive reactions

to multidecadal variability. ERAINT samples a seasonality

maximum and therefore reports biased high seasonality. This

bias implies that lifetime wind power generation is most of-

ten more stable throughout the year than would be expected

from ERAINT, facilitating system integration. In the bigger

picture, it may be relevant to rethink whether changes in sea-

sonality that were attributed to climate change in earlier stud-

ies (e.g., Reyers et al., 2016) may simply reflect natural vari-

ability.

There are also implications for individual wind park

projects as their profitability is strongly influenced by cli-

mate variability on long timescales. The same wind park

commissioned in different phases of low-frequency gener-

ation variability can have discounted lifetime cash inflows

anywhere between 95 % and 107 % of the mean value with

potentially severe impacts on profitability. To give an impres-

sion of scale, as the current German wind park fleet repre-

sents a EUR 95 billion investment, this translates into a life-

time revenue spread on the order of EUR 10 billion in Ger-

many alone.

Our study raises new questions. While Germany was cho-

sen as an exemplary case due to its current high deployment

of wind turbines, other, and larger, areas should also be stud-

ied. Are there compensating effects across Europe? If yes,
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Figure 6. Long-term evolution of normalized discounted lifetime cash inflows of a wind park whose generation follows the German mean. A

lifetime of 20 years, aging of 1.5 % yr−1 and a discount rate of 5.5 % yr−1 are assumed. The time series ends in 1990 because the underlying

reanalyses end in 2010.

expansion of the transmission network and optimized sit-

ing could help mitigate multidecadal variability in the same

fashion that it helps to smooth synoptic generation vari-

ability (e.g., Rodriguez et al., 2014; Grams et al., 2017;

Santos-Alamillos et al., 2017). This study is restricted to

wind energy because we doubt the reanalysis skill to cap-

ture cloud dynamics sufficiently well. Nevertheless, it would

be of high interest to investigate low-frequency variability

in other types of renewable generation: do similar modes

exist for photovoltaics and hydropower? In addition to the

winter link between wind power generation and the NAO,

other connections between multidecadal renewable genera-

tion and large-scale patterns of climate variability might ex-

ist. They could contribute to a process-based understanding

and should therefore be investigated in future work. Lastly,

climate models are, in theory, an excellent tool to quantify

and study natural climate variability as time series of arbi-

trary length can be obtained. Multidecadal variability can

thus be sampled substantially better compared to 20th cen-

tury reanalyses. However, it remains to be shown whether

climate models are capable to reproduce multidecadal vari-

ability that is relevant for the energy sector.
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