001     865543
005     20220930130219.0
024 7 _ |a 10.1109/TGRS.2019.2929731
|2 doi
024 7 _ |a 0018-9413
|2 ISSN
024 7 _ |a 0196-2892
|2 ISSN
024 7 _ |a 1558-0644
|2 ISSN
024 7 _ |a WOS:000505701800026
|2 WOS
037 _ _ |a FZJ-2019-04921
082 _ _ |a 620
100 1 _ |a Haut, Juan Mario
|0 0000-0001-6701-961X
|b 0
|e Corresponding author
245 _ _ |a Cloud Deep Networks for Hyperspectral Image Analysis
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582040134_32444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advances in remote sensing hardware have led to a significantly increased capability for high-quality data acquisition, which allows the collection of remotely sensed images with very high spatial, spectral, and radiometric resolution. This trend calls for the development of new techniques to enhance the way that such unprecedented volumes of data are stored, processed, and analyzed. An important approach to deal with massive volumes of information is data compression, related to how data are compressed before their storage or transmission. For instance, hyperspectral images (HSIs) are characterized by hundreds of spectral bands. In this sense, high-performance computing (HPC) and high-throughput computing (HTC) offer interesting alternatives. Particularly, distributed solutions based on cloud computing can manage and store huge amounts of data in fault-tolerant environments, by interconnecting distributed computing nodes so that no specialized hardware is needed. This strategy greatly reduces the processing costs, making the processing of high volumes of remotely sensed data a natural and even cheap solution. In this paper, we present a new cloud-based technique for spectral analysis and compression of HSIs. Specifically, we develop a cloud implementation of a popular deep neural network for non-linear data compression, known as autoencoder (AE). Apache Spark serves as the backbone of our cloud computing environment by connecting the available processing nodes using a master-slave architecture. Our newly developed approach has been tested using two widely available HSI data sets. Experimental results indicate that cloud computing architectures offer an adequate solution for managing big remotely sensed data sets.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gallardo, Jose Antonio
|0 0000-0003-0050-2927
|b 1
700 1 _ |a Paoletti, Mercedes E.
|0 0000-0003-1030-3729
|b 2
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
700 1 _ |a Plaza, Javier
|0 0000-0002-2384-9141
|b 4
700 1 _ |a Plaza, Antonio
|0 0000-0002-9613-1659
|b 5
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 6
773 _ _ |a 10.1109/TGRS.2019.2929731
|g p. 1 - 17
|0 PERI:(DE-600)2027520-1
|n 12
|p 9832 - 9848
|t IEEE transactions on geoscience and remote sensing
|v 57
|y 2019
|x 1558-0644
856 4 _ |u https://juser.fz-juelich.de/record/865543/files/08798981.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865543/files/Publication-charges-IEEE-Transactions-on-Geoscience-and-Remote-Sensing-Riedel-Cavallaro-2019.pdf
856 4 _ |u https://juser.fz-juelich.de/record/865543/files/08798981.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865543/files/Publication-charges-IEEE-Transactions-on-Geoscience-and-Remote-Sensing-Riedel-Cavallaro-2019.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:865543
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T GEOSCI REMOTE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21