000865568 001__ 865568
000865568 005__ 20220930130220.0
000865568 0247_ $$2doi$$a10.1002/adma.201903391
000865568 0247_ $$2ISSN$$a0935-9648
000865568 0247_ $$2ISSN$$a1521-4095
000865568 0247_ $$2Handle$$a2128/23122
000865568 0247_ $$2pmid$$apmid:31441160
000865568 0247_ $$2WOS$$aWOS:000483160600001
000865568 037__ $$aFZJ-2019-04933
000865568 082__ $$a660
000865568 1001_ $$00000-0002-4454-2819$$aNallagatla, Venkata R.$$b0
000865568 245__ $$aTopotactic Phase Transition Driving Memristive Behavior
000865568 260__ $$aWeinheim$$bWiley-VCH$$c2019
000865568 3367_ $$2DRIVER$$aarticle
000865568 3367_ $$2DataCite$$aOutput Types/Journal article
000865568 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572948073_23390
000865568 3367_ $$2BibTeX$$aARTICLE
000865568 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865568 3367_ $$00$$2EndNote$$aJournal Article
000865568 520__ $$aRedox‐based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen‐ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen‐ion transport properties for resistive‐switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X‐ray absorption spectromicroscopy, it is demonstrated that the reversible redox‐based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5, and the conductive perovskite phase, SrFeO3, gives rise to the resistive‐switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric‐field‐induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in‐plane direction of the device. In contrast, (111)‐grown SrFeO2.5 devices with out‐of‐plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive‐switching mechanism in SrFeOx‐based memristive devices within the framework of metal–insulator topotactic phase transitions.
000865568 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000865568 588__ $$aDataset connected to CrossRef
000865568 7001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b1
000865568 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b2
000865568 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b3
000865568 7001_ $$0P:(DE-Juel1)169309$$aJugovac, Matteo$$b4
000865568 7001_ $$0P:(DE-Juel1)162281$$aZamborlini, Giovanni$$b5
000865568 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b6
000865568 7001_ $$00000-0002-9080-8980$$aWaser, Rainer$$b7
000865568 7001_ $$0P:(DE-HGF)0$$aKim, Miyoung$$b8
000865568 7001_ $$0P:(DE-HGF)0$$aJung, Chang Uk$$b9
000865568 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b10$$eCorresponding author
000865568 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201903391$$gVol. 31, no. 40, p. 1903391 -$$n40$$p1903391 -$$tAdvanced materials$$v31$$x1521-4095$$y2019
000865568 8564_ $$uhttps://juser.fz-juelich.de/record/865568/files/Nallagatla_et_al-2019-Advanced_Material_OA.pdf$$yOpenAccess
000865568 8564_ $$uhttps://juser.fz-juelich.de/record/865568/files/Nallagatla_et_al-2019-Advanced_Material_OA.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865568 8767_ $$92019-10-10$$d2019-10-10$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padma.201903391
000865568 909CO $$ooai:juser.fz-juelich.de:865568$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169605$$aForschungszentrum Jülich$$b1$$kFZJ
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b2$$kFZJ
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b3$$kFZJ
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169309$$aForschungszentrum Jülich$$b4$$kFZJ
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162281$$aForschungszentrum Jülich$$b5$$kFZJ
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b6$$kFZJ
000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b10$$kFZJ
000865568 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000865568 9141_ $$y2019
000865568 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865568 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865568 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000865568 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000865568 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865568 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865568 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865568 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865568 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865568 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865568 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865568 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865568 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865568 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000865568 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000865568 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000865568 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x3
000865568 980__ $$ajournal
000865568 980__ $$aVDB
000865568 980__ $$aI:(DE-Juel1)PGI-7-20110106
000865568 980__ $$aI:(DE-Juel1)PGI-6-20110106
000865568 980__ $$aI:(DE-82)080009_20140620
000865568 980__ $$aI:(DE-Juel1)PGI-10-20170113
000865568 980__ $$aAPC
000865568 980__ $$aUNRESTRICTED
000865568 9801_ $$aAPC
000865568 9801_ $$aFullTexts