000865568 001__ 865568 000865568 005__ 20220930130220.0 000865568 0247_ $$2doi$$a10.1002/adma.201903391 000865568 0247_ $$2ISSN$$a0935-9648 000865568 0247_ $$2ISSN$$a1521-4095 000865568 0247_ $$2Handle$$a2128/23122 000865568 0247_ $$2pmid$$apmid:31441160 000865568 0247_ $$2WOS$$aWOS:000483160600001 000865568 037__ $$aFZJ-2019-04933 000865568 082__ $$a660 000865568 1001_ $$00000-0002-4454-2819$$aNallagatla, Venkata R.$$b0 000865568 245__ $$aTopotactic Phase Transition Driving Memristive Behavior 000865568 260__ $$aWeinheim$$bWiley-VCH$$c2019 000865568 3367_ $$2DRIVER$$aarticle 000865568 3367_ $$2DataCite$$aOutput Types/Journal article 000865568 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572948073_23390 000865568 3367_ $$2BibTeX$$aARTICLE 000865568 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000865568 3367_ $$00$$2EndNote$$aJournal Article 000865568 520__ $$aRedox‐based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen‐ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen‐ion transport properties for resistive‐switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X‐ray absorption spectromicroscopy, it is demonstrated that the reversible redox‐based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5, and the conductive perovskite phase, SrFeO3, gives rise to the resistive‐switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric‐field‐induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in‐plane direction of the device. In contrast, (111)‐grown SrFeO2.5 devices with out‐of‐plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive‐switching mechanism in SrFeOx‐based memristive devices within the framework of metal–insulator topotactic phase transitions. 000865568 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000865568 588__ $$aDataset connected to CrossRef 000865568 7001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b1 000865568 7001_ $$0P:(DE-Juel1)159254$$aBaeumer, Christoph$$b2 000865568 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b3 000865568 7001_ $$0P:(DE-Juel1)169309$$aJugovac, Matteo$$b4 000865568 7001_ $$0P:(DE-Juel1)162281$$aZamborlini, Giovanni$$b5 000865568 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b6 000865568 7001_ $$00000-0002-9080-8980$$aWaser, Rainer$$b7 000865568 7001_ $$0P:(DE-HGF)0$$aKim, Miyoung$$b8 000865568 7001_ $$0P:(DE-HGF)0$$aJung, Chang Uk$$b9 000865568 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b10$$eCorresponding author 000865568 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201903391$$gVol. 31, no. 40, p. 1903391 -$$n40$$p1903391 -$$tAdvanced materials$$v31$$x1521-4095$$y2019 000865568 8564_ $$uhttps://juser.fz-juelich.de/record/865568/files/Nallagatla_et_al-2019-Advanced_Material_OA.pdf$$yOpenAccess 000865568 8564_ $$uhttps://juser.fz-juelich.de/record/865568/files/Nallagatla_et_al-2019-Advanced_Material_OA.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000865568 8767_ $$92019-10-10$$d2019-10-10$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padma.201903391 000865568 909CO $$ooai:juser.fz-juelich.de:865568$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169605$$aForschungszentrum Jülich$$b1$$kFZJ 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b2$$kFZJ 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b3$$kFZJ 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169309$$aForschungszentrum Jülich$$b4$$kFZJ 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162281$$aForschungszentrum Jülich$$b5$$kFZJ 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b6$$kFZJ 000865568 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b10$$kFZJ 000865568 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000865568 9141_ $$y2019 000865568 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000865568 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000865568 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017 000865568 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017 000865568 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000865568 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000865568 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000865568 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000865568 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000865568 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000865568 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000865568 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000865568 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000865568 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0 000865568 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1 000865568 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000865568 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x3 000865568 980__ $$ajournal 000865568 980__ $$aVDB 000865568 980__ $$aI:(DE-Juel1)PGI-7-20110106 000865568 980__ $$aI:(DE-Juel1)PGI-6-20110106 000865568 980__ $$aI:(DE-82)080009_20140620 000865568 980__ $$aI:(DE-Juel1)PGI-10-20170113 000865568 980__ $$aAPC 000865568 980__ $$aUNRESTRICTED 000865568 9801_ $$aAPC 000865568 9801_ $$aFullTexts