000865626 001__ 865626
000865626 005__ 20210130003106.0
000865626 0247_ $$2doi$$a10.1371/journal.pcbi.1007193
000865626 0247_ $$2ISSN$$a1553-734X
000865626 0247_ $$2ISSN$$a1553-7358
000865626 0247_ $$2Handle$$a2128/23885
000865626 0247_ $$2altmetric$$aaltmetric:68372815
000865626 0247_ $$2pmid$$apmid:31589600
000865626 0247_ $$2WOS$$aWOS:000500776600052
000865626 037__ $$aFZJ-2019-04977
000865626 082__ $$a610
000865626 1001_ $$0P:(DE-Juel1)151182$$aBarz, Bogdan$$b0$$ufzj
000865626 245__ $$aLarge-scale, dynamin-like motions of the human guanylate binding protein 1 revealed by multi-resolution simulations
000865626 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2019
000865626 3367_ $$2DRIVER$$aarticle
000865626 3367_ $$2DataCite$$aOutput Types/Journal article
000865626 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605539740_2431
000865626 3367_ $$2BibTeX$$aARTICLE
000865626 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865626 3367_ $$00$$2EndNote$$aJournal Article
000865626 520__ $$aGuanylate binding proteins (GBPs) belong to the dynamin-related superfamily and exhibit various functions in the fight against infections. The functions of the human guanylate binding protein 1 (hGBP1) are tightly coupled to GTP hydrolysis and dimerization. Despite known crystal structures of the hGBP1 monomer and GTPase domain dimer, little is known about the dynamics of hGBP1. To gain a mechanistic understanding of hGBP1, we performed sub-millisecond multi-resolution molecular dynamics simulations of both the hGBP1 monomer and dimer. We found that hGBP1 is a highly flexible protein that undergoes a hinge motion similar to the movements observed for other dynamin-like proteins. Another large-scale motion was observed for the C-terminal helix α13, providing a molecular view for the α13–α13 distances previously reported for the hGBP1 dimer. Most of the loops of the GTPase domain were found to be flexible, revealing why GTP binding is needed for hGBP1 dimerization to occur.
000865626 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000865626 536__ $$0G:(DE-Juel1)jics6a_20190501$$aStructural dynamics of murine guanylate binding proteins, their dimerization and interaction with lipid bilayers (jics6a_20190501)$$cjics6a_20190501$$fStructural dynamics of murine guanylate binding proteins, their dimerization and interaction with lipid bilayers$$x1
000865626 588__ $$aDataset connected to CrossRef
000865626 7001_ $$0P:(DE-Juel1)174397$$aLoschwitz, Jennifer$$b1
000865626 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author
000865626 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1007193$$gVol. 15, no. 10, p. e1007193 -$$n10$$pe1007193 -$$tPLoS Computational Biology$$v15$$x1553-7358$$y2019
000865626 8564_ $$uhttps://juser.fz-juelich.de/record/865626/files/Customer%20Statement%20-%20Detail_Sept.pdf
000865626 8564_ $$uhttps://juser.fz-juelich.de/record/865626/files/Customer%20Statement%20-%20Detail_Sept.pdf?subformat=pdfa$$xpdfa
000865626 8564_ $$uhttps://juser.fz-juelich.de/record/865626/files/journal.pcbi.1007193.pdf$$yOpenAccess
000865626 8564_ $$uhttps://juser.fz-juelich.de/record/865626/files/journal.pcbi.1007193.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865626 909CO $$ooai:juser.fz-juelich.de:865626$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151182$$aForschungszentrum Jülich$$b0$$kFZJ
000865626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174397$$aForschungszentrum Jülich$$b1$$kFZJ
000865626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b2$$kFZJ
000865626 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000865626 9141_ $$y2019
000865626 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865626 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000865626 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865626 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865626 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2017
000865626 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865626 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865626 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865626 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865626 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865626 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865626 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865626 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865626 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865626 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865626 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865626 920__ $$lyes
000865626 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000865626 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000865626 980__ $$ajournal
000865626 980__ $$aVDB
000865626 980__ $$aI:(DE-Juel1)ICS-6-20110106
000865626 980__ $$aI:(DE-82)080012_20140620
000865626 980__ $$aUNRESTRICTED
000865626 9801_ $$aFullTexts
000865626 981__ $$aI:(DE-Juel1)IBI-7-20200312