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Abstract

Typical optimal experimental design (OED) methods aim at minimizing the covariance

matrix of the estimated parameters regardless of the intended application of the

model that is being estimated. This can unnecessarily increase the experimental

costs. Herein, we propose a new OED method, which tailors the designed experi-

ments to the model application. The method is demonstrated for model-based pro-

cess design and aims at mitigating a worst-case realization of the process design. The

proposed formulation results in a min–max–min problem and is based on bounded-

error OED. The method is illustrated via an ad hoc solution method using two exam-

ples, a simple illustrative example and the van de Vusse reaction, that show the

differences between typical and the new tailored OED method: experimental designs

can be considered good using the latter method, while the same design would be

considered bad with the former methods.

K E YWORD S

bounder-error estimation, min–max, optimal experimental design, process design, worst-case

optimization

1 | INTRODUCTION

System models are the backbone of model-based process design and

control. To describe the given system, the model equations are fitted

to experimental data via estimation methods, for example, regression

analysis or set-inversion. During modeling procedures, model uncer-

tainties are unavoidable. These model uncertainties can arise from:

(a) structural errors, where the model structure does not accurately

represent the reality, (b) parametric errors, that is, the parameter

uncertainties arising when fitting the model to the imperfect and/or

uninformative experimental data, and (c) regression errors, which

occur when suboptimal regression solutions are found. Regression

errors can be avoided if global optimization methods are used to fit

the system model to the experimental data.1 In this manuscript we

consider only parametric errors and assume that the model is structur-

ally correct and that the regression fit results from a global solution.

Therefore, to improve the model accuracy, the parameter uncer-

tainties should be reduced; this can be done by obtaining informative

experimental measurements and/or by reducing the measurement

errors. Herein, we are concerned with the former.

The improvement of parameter precision with the minimal amount

of experimental effort is the aim of optimal experimental design

(OED) methodologies.2-5 Equivalently, this results in the best possible

parameter precision for a given experimental effort. Depending on the

different hypotheses and assumptions made during the model valida-

tion procedure, various OED formulations are used, such as Bayesian

and frequentist OED6-9 or bounded-error OED,10,11 known also as

OED for guaranteed parameter estimation or set-membership estima-

tion. OED methods have been often studied in literature and applied

in various research domains, for example, biology,12,13 medicine,14,15

enzyme engineering,16,17 polymerization,18 reaction kinetics,19,20 and

process systems engineering.21,22 In most conventional OED
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problems, the goal of the formulation is to increase the overall preci-

sion of the system model parameters, that is, to decrease the confi-

dence region. Often the importance of every model parameter is

judged to be equal, since for a very accurate model prediction all

parameters have to be estimated with high precision. However, exper-

imental effort puts a cost on increasing the accuracy. This often

implies that due to cost constraints as well as experimental feasibility

not all model parameters, but rather only a subset can be estimated

with high precision. This leads to the following question: if the preci-

sion for all the parameters cannot be sufficiently increased, then for

which ones should it be? Or rather, should the precision of all the

parameters be increased? An intuitive way to answer the above ques-

tions is to look at the intended application of the model. It can easily

be envisioned that depending on the model application not all the

parameters have the same influence on the objective of the applica-

tion and, therefore, it is reasonable to focus on those parameters with

the highest influence.

The idea of tailoring an OED problem to the model's intended

end use is established, although not typically applied. Already in

the mid-1970s various optimality criteria based on statistical OED

were developed. Such design criteria include, among others, the

Ds-optimality,8,23,24 in which the accuracy for only the parameters of

interest is increased and the remaining parameters are seen as nui-

sance parameters. In optimal control the idea of combining model

identification and control design also emerged in the 1970s.25 Various

literature exists for OED for linear systems where model identification

and optimal control are combined.26-28 Recently, tailored OED

methods were developed for nonlinear dynamic process systems. One

example is OED for the improvement of optimal process design vari-

ance by introducing a heuristic weight factor into the design matrix,

where the weight factor reflects the sensitivity of the process with

respect to each of the parameters.29,30 Another example is the new

formulation for the so-called economical OED for optimal control

problems, in which the OED problem aims to minimize not the param-

eter uncertainty but the process optimality gap, which corresponds to

the distance between the optimal process and the true process.31

However, it should be mentioned that OED methods based on the

statistical design matrix can run into problems if the design matrix

(or a variation of it) is singular.9 In this manuscript, we look at models

that are used for model-based process design optimization.

Conventionally, identification of the system model and conceptual

process design optimization, are executed sequentially, that is, first a

system model is identified using experimental data and then a process

design optimization is performed based on the identified system

model. This has the drawback that the region of confidence of the

identified model does not necessarily match the relevant operating

points of the process. This can, on the one hand, prevent a reliable

process design due to model extrapolation, and on the other hand,

unnecessarily increase the experimental costs when model compo-

nents are accurately fitted that are irrelevant to the process design.

To avoid these drawbacks, information about the process design

should be taken into account in the early stages of model identifica-

tion. The idea of the proposed approach is to determine a system

model such that its parametric errors have a minimal influence on the

process design. In other words, the process variation toward the

parameter uncertainties is reduced during the model identification

procedure via a new OED formulation. Although the presented OED

method is developed specifically for process design, it can be easily

adapted to other areas, for example, in medical research, where often

data is rare and the goal of these studies is to achieve suitable predic-

tion of response curves.32-35

In this manuscript we show a new OED formulation, which aims

at the improvement of the optimal process design cost and is called

hereafter optimal experimental design for optimal process design

(OED–OPD). The OED–OPD formulation is a min–max–min (MMM)

optimization problem involving nonconvex nonlinear functions. The

lower (third) level problem consists of a typical process design optimi-

zation, in which a cost function is minimized. The middle (second) level

problem is a worst-case formulation for the optimal process design, in

which the worst-case realization of the optimal (minimum) cost is

determined with respect to the system's model parameters and their

uncertainties. Finally, the upper (first) level aims to determine the best

experimental conditions that will minimize the worst-case cost func-

tion. The MMM problem is a special case of a trilevel optimization

problem. In process systems engineering similar trilevel problems arise

in the design of flexible chemical processes.36-39 To the best knowl-

edge of the authors there does not yet exist an algorithm that can

guarantee a solution for a nonlinear nonconvex trilevel problem. Solu-

tion methods for trilevel problems under restrictive assumptions have

been used in literature: for linear problems40,41 and for convex

nonlinear problems42; in Reference 42, the trilevel problem is recast

as a multi-parametric program where the parameters are the optimiza-

tion variables from the lower subproblems. While this methodology

can in principle be applied to general nonlinear problems, it was illus-

trated in Reference 42 only using quadratic objectives and linear con-

straints. For more general problems the scaling of the method may

not be favorable. A trilevel problem, however, is an extension of

bilevel problem. We, therefore, reduce the MMM problem to a bilevel

max–min problem via an ad hoc sampling method. Bilevel problems

have been studied extensively in literature with guarantees of a global

solution.43-50 Herein, we adapt the solution method from Djelassi

et al,51 which allows for inequality as well as equality constraints in

the subproblems.

Note that throughout the manuscript we only include continuous

variables. This is done for simplicity as the considered algorithms for

bilevel problems are also applicable to mixed integer problems. Includ-

ing integer variables is of interest in practice. At the level of process

design it would be of interest to consider integer variables, for exam-

ple, in superstructure formulations or for rigorous modeling of separa-

tion units. Similarly, at the level of experimental design, integer

variables occur for piecewise constant inputs or if the bounded-error

OED formulation from Reference 11 is developed to account for the

number of measurement points as optimization variables.

In the following, we will first define a general form for the system

model (Section 2), followed by the definition of bounded-error OED

(Section 3) which is the basis for the min–max–min OED–OPD
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formulation, presented in detail in Section 4. A brute-force solution

method for the MMM optimization problem is discussed in Section 5

and the new tailored OED problem is illustrated via two examples in

Section 6.

2 | SYSTEM MODEL

For the simulation and optimization of real-life systems, the underly-

ing physical-chemical phenomena are often described via a mathemat-

ical model. Herein, this type of model is referred to as a system model.

Such models often consist of a system of ordinary differential (ODE)

or differential-algebraic (DAE) equations. Herein, it is assumed that

the model structure is correct and identifiable. In the following we

consider systems for which the input–output relationship of the sys-

tem model can be written as:

y = g v,pð Þ, ð1Þ

where y are the system's outputs of dimension ny, p are the model

parameters of dimension np, v are the system's manipulated variables

of dimension nv consisting of the discretized control inputs u and/or

initial values of the system's states. For simplicity the time depen-

dency as well as the dependency on initial values has been omitted in

Equation (1). This is possible for outputs y that are evaluated at dis-

crete time points and for each time point a new output can be

defined. The system outputs can be given explicitly or calculated using

the ODE or DAE models. Herein, we assume that the outputs are

given explicitly for two reasons: first of all, it is easier to demonstrate

and understand the proposed MMM formulation for an explicit output

Equation (1), and second of all, available global dynamic optimization

methods for ODE and DAE systems still need development.52,53

Predicting the system outputs necessitates some sort of insight

into the system model parameters. Usually the parameters are deter-

mined by fitting the system model to experimental data via estimation

methods,54-56 for example, weighted maximum-likelihood or set-

membership estimation. The experimental data is known only up to a

certain precision, that is, the data has measurement errors, which are

usually bounded between emin and emax. From a statistical point of

view, these error bounds are expressed via probability moments. The

experimental errors are propagated to the model parameters during

the estimation procedure, thus resulting in parameter uncertainties.

Depending on the estimation method, the parameter uncertainties

can be characterized in various ways, for example, confidence regions

or feasible sets.8,57 Various formulations for quantifying the parame-

ter uncertainties can be used in the following trilevel OED problem. In

this manuscript we consider parameter uncertainties that are

expressed via a feasible parameter set as defined below.

In set-membership estimation, instead of estimating a single value

of the parameter vector that best fits to the experimental data, a set

is determined that contains all parameter values that are consistent

with the experimental data and their measurement errors (see

Figure 1). In other words the residual, ek(p), between the measured

output, ỹk, and the predicted output, yk = gk(v, p), has to lie within the

measurement error bounds emin
k , and emax

k .58 The feasible parameter

set ~P, therefore, consists of all values of p in some host set P such that

the residual error is admissible and can be expressed using the model

outputs as follows:

~P≔ p2 P j emin
k ≤ gk v,pð Þ− ~yk ≤ e

max
k

� �

, 8 k21,…,ny: ð2Þ

The outputs are defined via the system model yk = gk(v, p). In

bounded-error estimation, also known as set-membership estimation

or guaranteed parameter estimation, a parameter set is calculated

such that Equation (2) is satisfied.55,59 It should be noted that the fea-

sible parameter set ~P may be empty if the model structure and/or

hypotheses on the error bounds are erroneous.58

Assuming that the model is structurally correct and identifiable,

the accuracy of the output predictions y increases with the precision

of the model parameters p. The parameter precision can be increased

by reducing the measurement errors and/or by obtaining more infor-

mative experimental data. Obtaining informative data with minimal

experimental effort is the domain of OED for parameter precision.9

3 | OED FOR BOUNDED-ERROR

MEASUREMENTS

OED for parameter precision is an optimization problem that aims at

finding the experimental conditions, that is, values for the manipulated

variables v, for which the parameter uncertainties are as small as pos-

sible.2,3,8,9 Depending on how the parameter uncertainties are charac-

terized, various formulations for OED exist. If the parameter

Time

F IGURE 1 Illustration of a feasible parameter set resulting from
measurements and their bounded errors. On the left: measured
output data ỹ at discrete time points and their errors, resulting in a
trajectory space of feasible predictions (red area on the left). The time
discrete measurements and their errors are represented via the black
crosses and the error bars, respectively. The trajectory space is

mapped to a feasible parameter set ~P (red area on the right) in the
parameter space {p1× p2} during bounded-error parameter estimation.
The black box represents the initial parameter host set P [Color figure
can be viewed at wileyonlinelibrary.com]
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uncertainties are described using Gaussian probability distributions,

then typically statistical frequentist OED is used, in which a measure

of an information matrix, often referred to as the Fisher information

matrix (FIM), is maximized.8,9 If the parameter uncertainties are

described using a feasible parameter set ~P, then bounded-error OED

can be used,58 in which the parameter uncertainty is usually related to

the size of the feasible parameter set. Typically, in bounded-error

OED an over-approximation of the feasible parameter set is

minimized.11

The novel tailored OED formulation presented in Section 4 is based

on the bounded-error OED problem from Reference 11. For the new

OED formulation we extend the min–max OED problem in Reference

11 to a MMM problem in order to reduce the overall variation of the

process design toward the parametric errors of the system model.

The OED formulation proposed in Gottu Mukkula et al11 is a gen-

eral and rigorous bounded-error OED method that is neither

restricted to linear models as in Reference 60 nor to discrete sets of

experimental conditions as in References 61 and 62. The OED prob-

lem in Reference 11 is a worst-case formulation written as a bilevel

(min–max) program that determines the smallest feasible parameter

set that is consistent with the measurement errors, emin and emax. The

solution method proposed in Reference 11 is based on a

reformulation of the lower-level problem using KKT optimality condi-

tions. However, this reformulation cannot guarantee a global solution

of the lower level and, therefore, cannot guarantee a feasible solution

in the upper level. The same bilevel OED formulation was used in Ref-

erence 63, however, using a generalized semi-infinite program (GSIP)

to solve the problem. The method proposed in Reference 63 can guar-

antee a global solution for the upper-level and lower-level problems.

In Reference 63 it was shown that even if the upper level cannot be

solved globally, a global upper bound is still obtained, as long as the

lower level is solved to global optimality. Herein, we adapt the formu-

lation and solution method from Walz et al.63

F
* =F v*,p*

� �

=min
v2V

max
pL,i 2P

pU,i 2 P

X

np

i=1

pU,i
i
−pL,i

i

� �

ð3Þ

st.

2emin
k ≤ gk v, p̂ð Þ−gkðv,p

j,iÞ≤ 2emax
k

�8j2 U,Lf g, i2 1,…,npf g,

8k2 1,…,nyf g
ð4Þ

with pL,i = pL,i1 ,…,pL,inp

� �T

and pU,i = pU,i1 ,…,pU,inp

� �T

for i = 1…np. P and

V are a subset of real numbers of dimension np and nv, respectively.

The functions g correspond to the system outputs (see Equation (1)),

whereas, g v, p̂ð Þ corresponds to nominal output values ŷ calculated

using nominal parameters p̂, which are known (or estimated) a priori.

Assuming that the system model is correct (the input–output Equa-

tions (1) describe the reality) and that the model is fitted to the experi-

mental data without any regression errors, then the estimated

parameter values p̂ are close to the true (real) parameter values. In real

life applications, this assumption does not necessarily hold, which can

result in nonoptimal experimental conditions and uninformative data

that does not necessarily reduce the parameter uncertainty. There-

fore, often generation of new experimental data, parameter estima-

tion, and OED are conducted sequentially in order to estimate

parameter values, p̂, close to the true parameter values.8 The non-

optimal experimental conditions are enhanced in frequentist OED

methods based on the FIM due to the linearization of the equations

of the system model. The above bounded-error OED and the pro-

posed trilevel OED are not based on linearizing the system model and,

therefore, nonoptimal solutions due to system simplification are

avoided. One can also extend the above OED formulation into a so

called robust (min–max) OED problem64-66 by replacing (4) by a semi-

infinite constraint. This would, however, increase the problem com-

plexity and the computational time needed to solve the problem.

In the above formulation, the feasible parameter set P, described

via constraint (4), is over-approximated by an aligned minimum-

perimeter bounding box (orthotope), and the optimization problem

results in an enclosing box with the smallest possible perimeter,

2 � F*. The enclosing box is constructed using pU,i
i

and pL,i
i
, which cor-

respond to the outermost points of the feasible parameter set P. In

this formulation, a special case of the so-called global over-

approximation of the realization of the measurement errors11 is used,

in which the absolute values of the lower and upper bounds of the

errors are equal: jemin j = j emaxj. It should be noted that the global

over-approximation is defined by Gottu Mukkula and Paulen11 as an

envelope of all possible results of bounded-error estimation under

each possible realization of the measurement error. In other words

the feasible parameter set is defined via the constraints

emin
k −emax

k ≤ gk v, p̂ð Þ−gk v,pj,i
� �

and gk v, p̂ð Þ−gk v,pj,i
� �

≤ emax
k −emin

k . Con-

sequently, the approximated parameter set should be consistent with the

experimental data within twice the measurement errors. Various formula-

tions can be defined for the approximation of the parameter set

(Equation (4)), for example, using confidence regions for normal distributed

measurements, aswell as for themeasurement errors emin
k and emax

k .56,67

In comparison to bounded-error estimation, in bounded-error

OED the feasible parameter set is described using a representative

output ŷ of the measurements and not the measurements themselves.

This is necessary since the measured outputs are directly correlated

to the manipulated variables v. As a consequence, in the OED formu-

lation the estimated parameter set P is never empty, independent of

the hypotheses on the model structure or the error bounds. In the lim-

iting case, the parameter set is equal to a trivial solution pj,i = p̂, which

always satisfies the inequality constraints (4).

As seen in the above bounded-error OED formulation

(Equation (3)), the precision of each model parameter is judged to be

equal (no weight factor is present in the objective). However, as men-

tioned in the introduction, depending on the intended application of

the model, not all parameters should necessarily be judged equally.

Due to the generality of the bilevel bounded-error OED

formulation,11 a weight factor can easily be added to the objective (3).

However, in this case, the question of how to define the weight factor
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arises. For example nuisance parameters can be defined (analogously

to DS-optimality8,23,24) with a weight factor of zero. However, in the

case of model-based process design it is not easy to decide a priori

which parameters can be defined as a nuisance parameters. In this

case a heuristic similar to References 29 and 30 can be applied to cal-

culate the weight factor. However, a more intuitive approach is to

define a new objective in Equation (3) that directly optimizes a metric

that describes how good the final optimal process is.

4 | OPTIMAL EXPERIMENTAL DESIGN FOR

OPTIMAL PROCESS DESIGN

Conceptual model-based process design consists of defining a cost

function Φ that is minimized with respect to the process design vari-

ables d (optimization degrees of freedom) subject to constraints. The

process design constraints contain model equations, which are deter-

mined by fitting experimental data. This means that the uncertainties in

the model parameters result in uncertainties in conceptual model-based

process design, such as the uncertainties in the process design variables

d or the uncertainties in the cost function Φ. Thus, the process design

is parametric in the uncertain parameters. For each parameter realiza-

tion there exists an optimal cost function, Φ*(p) = mind 2 DΦ(p, d).

In the context of set-membership estimation, the bounded errors in

the measurements result in a feasible parameter set (see Section 3). This

in turn will result in a variation in the process design, for example, in the

design variables and the cost function. Herein, we are concerned with

the variation in the process design cost function. For a feasible parame-

ter set defined via Equation (4), by definition, the set is constructed

around a nominal parameter p̂; hence, the cost function will also vary

around the optimal nominal cost Φ* p̂ð Þ. It is easy to see that for a con-

tinuous cost function and compact host sets, the optimal nominal cost

is bounded: Φ*

L ≤Φ
* p̂ð Þ≤Φ*

U, where Φ
*

L and Φ
*

U are defined as follows:

Φ
*

L =minp2Pmind2D Φ p,dð Þ ð5Þ

Φ
*

U =maxp2Pmind2D Φ p,dð Þ: ð6Þ

For a more reliable process design, the process uncertainties of inter-

est have to be reduced, that is, the uncertainties in the process objective

cost function Φ. For the proposed trilevel OED method we opt for a con-

servative formulation by mitigating the worst-case realization of the pro-

cess cost function, Φ*

U. The idea behind the presented OED–OPD is,

therefore, to plan new experiments that not just minimize the model

parameter uncertainties, but minimize the worst-case process cost

realization (see Figure 2). The OED–OPD formulation is, therefore, a

MMM optimization problem, a special case of a trilevel problem. As a

result, the system model is made more precise in such a way that bad

process designs are avoided.

Other formulations are possible, for example, minimizing the width

of the uncertainty interval of the process cost Φ
*

L ,Φ
*

U

� 	

or by using

statistical likelihood formulations for process design such as in

Reference 57. The former formulation can be computationally

expensive, since two optimization problems have to be solved in

parallel: the best-case (Equation (5)) and the worst-case (Equation (6))

realization of the process cost. The statistical likelihood formula-

tion used in Reference 57 might be a good alternative for the

OED–OPD problem since the authors in Reference 57 look at how

parametric uncertainties of the system model affect process design

optimization, while herein we try to minimize these parametric

uncertainties such that in the end the process design is improved,

for example, the profit is increased. In the following the three

levels will be examined in detail and, finally, combined into a MMM

optimization problem. The MMM problem consists of two distinct

models: the system model (see Section 2) and the process design

model (see Section 4.1).

4.1 | Third-level (lower-level) problem

The third-level problem consists of model-based process design opti-

mization, for which different formulations are possible. Herein, the

system of equations used to define the process design optimization

problem is referred to as a process design model. Here, we formulate

the third-level problem as a conventional steady state process design

optimization as

Φ
* pð Þ=min xst ,dð Þ2D pð ÞΦ xst,p,d,Cð Þ: ð7Þ

F IGURE 2 Schematical representation of optimal experimental
design for optimal process design. The vertical axis corresponds to the
optimal process cost, Φ*(p) = mind 2 DΦ, and the horizontal axis
corresponds to the model parameter values. The process design cost
is parametric in the parameter uncertainties, represented here via
parameter intervals. For one set of experiments, the parameter

interval p1 results in a worst-case realization of the cost function Φ
*

U,1

that is greater than the worst-case realization Φ
*

U,2 for a new set of

experiments that are planned with optimal experimental design. Thus

the latter set is preferable. Φ* p̂ð Þ corresponds to the optimal
nominal cost [Color figure can be viewed at wileyonlinelibrary.com]
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Therein, Φ denotes the process cost and the feasible set is

defined as

D pð Þ= xst,dð Þ 2D j h xst,p,d,Cð Þ=0^ l xst,p,d,Cð Þ≥0f g: ð8Þ

p and C are the model and the process specific parameters, respec-

tively, and Φ
*(p) is the optimal (minimum) process cost. d are the

design variables of dimension nd, consisting of process design and

operational decisions. xst are the process state variables of dimension

nxst that are not part of the design variables. Note however, that d

may include some process states that are of interest for the cost func-

tion, such as the amount of product or the reactor temperature. The

equality constraints in Equation (8) consist of balance equations (in the

above formulation only steady state equations are considered) and

design equations, such as closure conditions and constitutive equations.

The inequality constraints in Equation (8) are process specifications and

physical limits, and depending on the process are sometimes omitted.

As can be seen from Equations (7) and (8), the optimal cost is either

explicitly or implicitly defined via the state variables dependent on the

model parameters, whose uncertainties are further propagated to the

cost. In other words Φ*(p) is parametric in the parameter uncertainties,

which are determined in the second-level problem (Section 4.2).

Remark 1 If the set of feasible design variable solutions is empty,

then the entire process is infeasible, the third-level problem is infeasi-

ble, and the optimal process cost value Φ
*(p) is infinite by convention.

4.2 | Second-level (middle-level) problem

The second-level problem is a worst-case optimization. The optimal

process cost is maximized over a set of feasible parameters, for which

we choose a similar formulation as the one used in bounded-error

OED, see Section 3, Equation (4). The problem is formulated as a

max–min problem according to

Φ
*

U vð Þ=maxp2P vð Þmin xst ,dð Þ2D pð Þ Φ xst,p,d,Cð Þ ð9Þ

with the set of feasible parameters being defined as

P vð Þ= p2 P j2emin
k ≤ gk v,pð Þ−gk v, p̂ð Þ≤2emax

k ,k =1,…,ny
� �

: ð10Þ

Φ
*

U vð Þ is the worst-case optimal process cost. The model output

equations g are either given explicitly or are calculated using the sys-

tem model ODE or DAE systems. The feasible parameter set P(v) is

parametric in the manipulated variables v, that is, the size and shape

of the feasible parameter set is dependent on the manipulated vari-

ables, for example, if the experiment is informative, a smaller feasible

set is obtained in comparison to an uninformative experiment. The

worst-case realization of the optimal process cost, Φ*

U vð Þ, is paramet-

ric in the uncertainties in the system model parameters, and therefore,

is also indirectly parametric in v.

Remark 2 In the case that there exists at least one parameter value,

for which the third-level feasible set is empty, the worst-optimal pro-

cess cost value Φ
*

U vð Þ is infinite (see Remark 1) and the second-level

problem is unbounded. Furthermore, since the nominal parameter

values p̂ are always contained in P(v), the second-level problem is

always feasible.

4.3 | First-level (upper-level) problem

In the first-level, the optimal manipulated variables v are determined,

for which the worst-case process cost is minimal. The manipulated

variables are experimental decision variables, that is, v determine

which future experiments, for example, small scale laboratory experi-

ments, should be planned for improving the precision of the system

model. The final OED–OPD problem formulation reads as:

Ψ
* =minv2Vmaxp2P vð Þmin xst ,dð Þ2D pð Þ Φ xst,p,d,Cð Þ, ð11Þ

where Ψ* is the minimal worst-case optimal process cost and v are

the manipulated variables of the system model. For simplicity, any

constraints on manipulated variables are included in the host set V.

Optimal solutions for the three levels of the formulation are denoted

by d*, p*, and v*, respectively.

4.4 | Trilevel

The trilevel OED–OPD formulation aims at mitigating the worst-case

realization of the process design cost function. The worst-case is cal-

culated using a feasible parameter set defined by the system model,

measurement errors, and the manipulated variables v (see Equa-

tion (10)). In the OED–OPD formulation it is possible that better pro-

cess designs (with smaller costs) lie outside the identified feasible

parameter set. However, under the assumption that the feasible

parameter set is constructed around a nominal parameter p̂ value that

is close to the true model parameter, these better process designs

become unrealistic and should, therefore, be avoided. In other words,

the better process designs are superoptimal with respect to the true

optimal process. In the context of OED, this means that the OED–

OPD formulation aims at finding experimental conditions that mini-

mize the process uncertainty interval around a true, realistic optimal

cost Φ* p̂ð Þ by decreasing the interval's upper bound Φ
*

U.

The OED–OPD problem consists of two distinct constraint sets

that correspond to the two different models used in the formulation:

the system model (Equation (1)) and the process design model

(Equation (8)). This is necessary since often the identification of the

system model and process design optimization have different goals

and the physical limits, constraints, and level detail that are imposed

on the system model or process design vary. Therefore, several impor-

tant distinctions between variables have to be made: (a) between the

system model state variables x and the process state variables xst;

while these variables might have the same physical meaning, for
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example, a reactant concentration, in the optimization they are con-

sidered as two different variables. (b) between the system model

manipulated variables v and the process inputs, which, depending on

the process design, are either part of the design variables d or the pro-

cess parameters C. Again, the manipulated variables and the process

inputs can have the same physical meaning, for example, the initial

reactant concentration at time t = 0, however, they are considered as

two different variables in the optimization. (c) between the manipu-

lated variables v and the process design variables d. The manipulated

variables are decision variables made on the level of the experimental

design, while the process variables are operational decision variables

made on the level of the process design, and are not equal to each

other. As mentioned before, both models can contain integer vari-

ables, for example, number of trays in a distillation column or discrete

control variables in the system outputs y. However, for simplicity we

have omitted these in the OED–OPD formulation; the presence of

integer variables can make the solution harder since mixed-integer

nonlinear solvers have to be used.

In the trilevel formulation, when the set of feasible third-level

solutions is empty, that is, no d exists that satisfies the constraints in

Equation (8), the minimal worst-case process cost value Ψ
*(v) is infi-

nite (see Remarks 1 and 2). In this case, the overall problem is infeasi-

ble and the manipulated variables v* are also infeasible (since an

infeasible process is to be avoided). However, the second-level prob-

lem is always feasible (see Remark 2). Essentially, it is possible to find

experimental conditions but in a worst-case sense these are not infor-

mative enough to ensure a feasible process. This can occur if the con-

straints of the process model are too restrictive or if the assumptions

made in the system model are erroneous. In this case the process

design constraints and/or the system model assumptions and con-

straints, such as the bounds on the measurement errors or the esti-

mated value of the nominal parameters p̂, have to be redefined.

The presented trilevel formulation is specifically tailored for the

improvement of conceptual model-based process design. However,

the methodology itself is much more general and can be applied to

different domains. The trilevel formulation can be straightforwardly

used for other tailored OED problems by simply changing the objec-

tive cost function in Equation (11) and the constraint equations in

Equation (8).

5 | BRUTE FORCE SOLUTION METHOD

In process systems engineering, models are typically described using

nonlinear functions resulting in nonconvex problems. Algorithms for

multilevel optimization problems exist in literature, however, they

often rely on some strict assumptions in the problem formulation such

as linearity and/or convexity.42 To the knowledge of the authors no

trilevel algorithm exists for general nonlinear nonconvex problems.

Hence herein, we opt for a brute force solution method to reduce the

problem from a trilevel to a bilevel formulation and the resulting

bilevel max–min problem is solved to global optimality using commer-

cially available global solvers in GAMS.68 This guarantees a feasible

solution of the OED–OPD problem through global solution for the

third and second level.

For the brute force solution we first perform uniform sampling of

the system's manipulated variables v and include the bounds of host

set V into the set of random samples. Herein, it is assumed that the

host set V of the system's manipulated variables is constrained via a

simple hyper box. At each sampling point vm in the host set V we for-

mulate and then solve the bilevel problem identical to the second-

level problem Equations (9) and (10) with the exception that now v

comes from a discrete set and is not continuous. The bilevel problem

Equations (9) and (10) can be reformulated as a GSIP and solved using

the algorithm proposed by Djelassi et al51 with a specialization of the

algorithm to min–max problems as proposed in Reference 63. The

smallest worst-case process cost Φ*

U v*m
� �

is then chosen as the opti-

mal solution value among all the discrete worst-case realizations.

The GSIP algorithm in Reference 51 requires continuity of all func-

tions and equations and the existence of a Slater point arbitrarily close to

a GSIP optimum in the objective. As shown in Reference 63 the assump-

tion of an ε-optimal GSIP Slater point is always satisfied for any feasible

GSIP resulting from the reformulation of a min–max program. In Refer-

ence 51 it is also assumed that a solution for the equality constraints

exists and that it is unique. If this assumption is not satisfied then the

process model has to be reformulated such that the solution set is con-

strained to a unique solution. If the process model does not contain any

inequality constraints, then the bilevel max–min problem can be

reformulated as a semi-infinite program (SIP).

5.1 | Implementation

The max–min algorithm (see Supporting Information) to solve the OED–

OPD problem is implemented in GAMS68 version 25.0.1 using BARON

version 17.10.16. All numerical calculations are run on a 64-bit Intel(R)

Xeon(R) E5-2630 v3 CPU with eight cores and hyper threading at

2.40 GHz running Windows Server 2016 Standard. The following algo-

rithm optimization variables are used: optimality tolerance for termination

ϵ = 10−1, optimality tolerance for the upper bounding problem and lower-

level problem ϵ
LBD = 10−2 and ϵ

LBD, LLP = 10−2, an empty initial set YUBD,

0 = ;. All GAMS files, the max-min algorithm as well as the case studies

models from Section 6 can be found in the Supporting Information.

6 | CASE STUDIES

In the following we present the OED–OPD methodology for model-

based process design on two examples. The first example is a simple

illustrative example and the other one is a typical chemical processes

consisting of an ideal continuous stirred tank reactor (CSTR) and split

distillation columns.

6.1 | Illustrative example

The first example is a simple system model with a trivial process cost

function and is used as a proof of concept. It consists of two distinct
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models: the system model and the process design model. We start by

introducing the system model, which consists of two output equations

with two model parameters and two manipulated variables. The sys-

tem model is as follows:

y1 = v1e
p1t

y2 = v2e
p2t,

ð12Þ

where p1 and p2 are the system model parameters, v1 and v2 are the

system's manipulated variables, the model outputs are y1 and y2, both

of which are measured during an experimental run, and t is time. The

manipulated variables v1 and v2 correspond to the initial values of the

system states x1(t = 0) and x2(t = 0), respectively, which are equal to

the model outputs x1 = y1 and x2 = y2. We want to conduct an experi-

ment that would improve the model predictions, that is, increase the

parameter accuracy. With OED formulations, the optimal values for

the manipulated variables, for which the parameter uncertainties are

decreased, can be determined. However, we want to improve only

the parameters with the highest influence on the process design cost

function.

For this illustrative example, the process design model consists of

one process state equation and a process cost function that is to be

minimized. The process model is as follows:

x1,st = uproce
p1tf

Φ=
x1,st

d
,

ð13Þ

with Φ being the cost function, xst the process state variable, d the

process design variable, tf is the time point at which the process cost

is evaluated, and uproc a constant process input, corresponding to the

initial value of the process state variable x1, st at time t = 0. As men-

tioned in Section 4.4, a distinction between the system and process

variables has to be made. In this example the state variables y1 and x1,

st, and the manipulated variable v1 and process input uproc have the

same “physical” meaning, respectively, but in the OED–OPD formula-

tion they are considered as separate variables. These similarities

between the variables of the system and process design model often

occur and it is important that these variables are not set to be equal.

The process design variable d (operational decision variable) and the

system's manipulated variables v1 and v2 do not have the same “physi-

cal” meaning and are not equivalent to each other.

Using the trilevel OED–OPD problem formulation we want to

determine experimental conditions that would mitigate the worst-

case realization of the process cost function; in other words, we want

to find experimental conditions that would result in the smallest possi-

ble upper bound Φ
*

U of the process uncertainty interval. The OED–

OPD formulation works as follows: first, knowledge about the nominal

parameters p̂1 and p̂2 is acquired, for example, via parameter estima-

tion using an initial set of experimental data. Second, a choice for the

manipulated variables v1 and v2 is made, for example, via grid sampling

of the host set V. Based on these values, the system model and the

nominal parameters, a feasible parameter set P(v) is calculated. Finally,

using the determined feasible parameter set, the worst-case realiza-

tion of the optimal process cost Φ*

U vð Þ is calculated. Using the brute

force method, the smallest worst-case realization Φ
*

U vmð Þ is chosen as

the optimal solution.

For the brute force solution, 100 random discrete points from the

manipulated variable host set were taken. The exact problem formula-

tion for the illustrative example can be found in the Supporting Infor-

mation. For each discretization point, an optimal solution was found

in two iterations of the SIP max–min algorithm (see Supporting Infor-

mation) and on average in 30 CPU s.

For this simple example the optimal results can be deduced analyt-

ically from the system model and process equations. First of all, the

cost function Φ is inversely proportional to the design variable d and

thus, Φ is minimal when the design variable is at its upper bound, that

is, d = 10. Second of all, since the model outputs increase monotoni-

cally with the model parameters and the manipulated variables, and

absolute error bounds are used in the problem formulation, the size of

the feasible parameter set P decreases for higher values of the manip-

ulated variables; thus, the optimal values for the manipulated variables

v1 and v2 are at their upper bounds. Third of all, the cost function only

depends on model parameter p1 and therefore, the sensitivity of the

cost function depends only on the precision of p1 and only v1 influ-

ences the optimal cost function solution.

The results of OED–OPD for the illustrative example are as

expected. The optimal value for the design variable is found to be

d* = 10 and the influence of the manipulated variables v1 and v2 on

the worst-case optimal cost solution Φ
*

U vmð Þ are shown in Figure 3. As

anticipated only v1 has an influence on the worst-case optimal cost

function Φ
*

U vmð Þ: the worst-case cost function decreases with v1 but

F IGURE 3 Influence of the manipulated variables on the worst-
case optimal cost function defined by Equation (9) for the illustrative
example (Equations (12) and (13)). Only manipulated variable v1

(circle) has a direct influence on the cost function. The worst-case
optimal cost function decreases with v1. Manipulated variable v2

(cross) shows no influence on the cost function: the worst-case
optimal cost is arbitrarily scattered with respect to v2
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is arbitrarily scattered with respect to v2, indicating that v2 has no

influence on the cost. The optimal solution is found to be at the upper

bound of v1, that is, v*1 =10. Based on the trilevel OED–OPD formula-

tion the optimal experimental conditions are v1 = 10 and v2 2 [0,10].

In this case v2 can be arbitrarily chosen by the experimenter, for

example, v2 = 0. These experimental conditions differ significantly

from classical statistical OED formulations,9 which would give v1 = 10

and v2 = 10 as the optimal experimental conditions since these OED

formulations usually target the improvement of all model parameters.

Other tailored OED formulations would also give the same optimal

experimental conditions. For example, using Ds-optimality p2 can be

defined as a nuisance parameter and since y1 and y2 only depend on

p1 and p2, respectively, the Ds-optimality design then depends only on

v1. Using the heuristic methodology proposed in Reference 29 also

results in a weighted FIM matrix that depends only on v1 since the

sensitivity of the process design cost function toward p2 is equal

to zero.

This illustrative example also shows that the system model param-

eters do not necessarily have to be identifiable for effectively reduc-

ing the uncertainty of the process design when using the OED–OPD

formulation. If we assume that only the system model output y1 is

measured then the parameter p2 becomes unidentifiable. This, how-

ever, does not influence the above results since the process cost func-

tion Φ does not depend on p2. The OED–OPD formulation, in this

case, would work under model unidentifiability.

6.2 | Van de Vusse reaction

For the next example we consider a typical van de Vusse reaction,

which consists of one consecutive and one side reaction. The van de

Vusse reaction can be written as follows:

A!
k1

B!
k2

C,

2A!
k3

D,

where A is the reactant, B is the desired product and C and D are the

side-products. We want to determine the optimal experimental condi-

tions that would reduce the parameter uncertainties of the system

model that have the highest influence on the process design. In the

OED–OPD formulation two distinct models have to be defined, and

we start with defining the system model.

For OED–OPD formulation we assume that the reaction takes

place in an isothermal batch reactor and that the manipulated vari-

ables, that is, experimental conditions, are the initial concentrations of

the reactant A and the product B, v1 = cA(t = 0) and v2 = cB(t = 0).

Therefore, the system model for the van de Vusse reaction corre-

sponds to an ODE system that does not have an analytical solution.

Hence, for the implementation of the ODE system in GAMS, the mid-

point explicit discretization method is used to solve the system model

for various time points. We choose the time step such that the dis-

cretized reaction equations adequately represent the dynamic

behavior of the reaction for the nominal kinetic parameters while still

keeping the computation inexpensive. In order to further reduce the

computational load, it is assumed that only the concentration of A, B,

and C are measured at various time points. Theoretically, the system

model is structurally identifiable if three components are measured at

various time points.

For the process design model it is assumed that the reaction takes

place in an ideal, isothermal CSTR. The reactor is followed by two split

distillation columns with 100% recovery. In the first column the reac-

tant is separated from the reaction mixture and recycled back to the

reactor and in the second column the product is separated from the

side-products. The process design cost is defined as Φ = Craw +

Cop + Ccap − Cprod, where Craw, Cop, Ccap, Cprod are the costs for the

raw materials, the operating costs, the capital costs and the product

cost, respectively. The process design variables, for which the pro-

cess cost is minimized, are the reactor volume VR and the product

molar flow rate FB at the end of the process. The exact OED–OPD

problem formulation with the various assumptions and variable

values made during the optimization can be found in the Supporting

Information.

For the brute force solution method 500 random discretization

points from the manipulated variable host set V were taken. For each

discretization point, a global solution for Φ*

U vmð Þ was found in three

iterations of the max–min algorithm (see Supporting Information) and

on average in 200 CPU s. However, for some discretization points a

global optimal solution for max–min problem Equations (9) and (8)

was found in about 3,500 CPU seconds.

F IGURE 4 The worst-case optimal process cost Φ*

U vmð Þ with

respect to the manipulated variables v1 (circles) and v2 (crosses). The
worst-case optimal process cost decreases with variable v1 and is

randomly scattered with respect to v2. Φ*

U vmð Þ becomes economically

profitable only when v1 is greater then 2 mol/m3; for values below

2.7 mol/m3 the process is not profitable and Φ
*

U vmð Þ is, therefore,

equal to zero. A slight influence on the worst-case optimal process

cost is noticeable with respect to v2; the variation of Φ*

U vmð Þ is around

2% for v2 2 [0,6] mol/m3
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The worst-case optimal cost, Φ*

U vmð Þ, with respect to the manipu-

lated variables (v1 = cA(t = 0) and v2 = cB(t = 0)) can be seen in

Figure 4. The best realization for the worst-case optimal cost is found

for the highest possible initial concentration values: c*A t=0ð Þ=6

mol/m3 and c*B t=0ð Þ=6 mol/m3, and is equal to Φ
*

U v*m
� �

= −4256

$/hr. This result is in accordance with classical statistical OED and

bounded-error OED,63 and corresponds to the smallest feasible set

obtainable for the given problem assumptions. The optimal solution

values for the design variables are found to be V*

R =1 m3 and

F*B = 23:8 mol/s.

Depending on the initial concentrations of the reactant and prod-

uct, the process is found to be either profitable, that is, a negative cost

is obtained as the optimal solution, or unprofitable. In the latter case

the optimal cost solution is then equal to zero. Interestingly, for the

van de Vusse reaction, a similar solution behavior is observed as in

the illustrative example: Φ*

U vmð Þ decreases with v1 and is arbitrarily

scattered with respect to v2. This indicates that the initial concentra-

tion of the reactant A influences the process design cost function, and

the initial concentration of the product B has no or very little influence

on the cost function. For a fixed value of v1 = 6 mol/m3, the variation

of Φ*

U vmð Þ is found to be only around 2% for a variation of v2 between

0 and 6 mol/m3. As can be seen in Figure 4 the process is not eco-

nomically favorable for all sample points. For the worst-case process

to be profitable the initial concentration of reactant A has to be

greater than 2.7 mol/m3.

The influence of the manipulated variables on the OED–OPD

objective are compared to A-optimality and D-optimality criteria, and

to the heuristic method proposed by Recker et al.29 For the latter

comparison, a modified A-optimality is analyzed, since the heuristic

method in Reference 29 scales only the diagonal elements of the FIM,

and therefore, has little effect on D-optimality. For the calculation of

the FIM, the Jacobian of the system model outputs for the measured

variables in function of the system model parameters is evaluated for

the nominal parameter values and for each discretized grid point from

the manipulated variable host set. For the heuristic method in Refer-

ence 29, the FIM is weighted using the sensitivities of the process

design cost in function of the system model parameters evaluated at

the nominal parameter values.

The results of the three mentioned OED optimizations with

respect to the manipulated variables are shown in Figures 5 and 6.

For the A- and D-optimality both of the manipulated variables influ-

ence the OED objective, that is, the trace and the determinant of the

FIM, respectively. However, the manipulated variable v1 has a slightly

bigger influence on the classical statistical OED objectives than v2,

since the latter is slightly more scattered along the y-axis (Figure 5).

For the heuristic method (Figure 6), the influence of variable v1 is

increased while that of v2 is decreased due to the weighting of the

FIM. Nevertheless, the influence of v2 in is still higher in comparison

to the presented OED–OPD method. The influence of the v2 on the

different OED objectives can be determined for a fixed value of

v1 = 6 mol/m3. For D-optimality the determinant varies around 86%

for a variation of v2 2 [0,6] mol/m3, for A-optimality the trace of the

FIM varies around 53% and for the heuristic method presented in Ref-

erence 29 the weighted trace of the FIM varies around 20%.

The optimal experimental conditions for all four cases are found

for the highest possible initial concentration values: c*A t=0ð Þ=6

mol/m3 and c*B t=0ð Þ=6 mol/m3. However, if we compare two differ-

ent experimental designs: (a) v1 = 6 mol/m3 and v2 = 6 mol/m3, and (b)

v1 = 6 mol/m3 and v2 = 0 mol/m3, we see that for the presented

(a)

(b)

F IGURE 5 The influence of the manipulated variables, v1 (circles)
and v2 (crosses) on two different optimal experimental design
objectives. (a) Classical statistical A-optimality criteria. Both variables
v1 and v2 influence the objective of A-optimality, that is, the trace of
the FIM. The influence of v2 is a slightly less since it is more scattered
among the y-axis. The variation of tr(FIM) is around 53% for
v2 2 [0, 6]mol/m3. (b) Classical statistical D-optimality criteria. Both
variables v1 and v2 influence the objective of D-optimality, that is, the
determinant of the FIM. The influence of v2 is a slightly less, since it is
more scattered along the y-axis. The variation of det(FIM) is around
86% for v2 2 [0, 6] mol/m3
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OED–OPD method both experimental conditions lead to very close

optimal OED objectives. This is not the case for the classical A- and

D-criterion OED and for the heuristic method presented in Reference

29. In the latter cases the experimental conditions of design (b) would

be most probably judged as unsatisfactory and effort would be

applied to conduct experiment (a). This of course increases the experi-

mental costs, first of all, due to the additional costs for the raw mate-

rials and second of all, this can further increase experimental costs if

other problems occur, such as limitations in laboratory equipment or

reactant miscibilities issues. In the case of the min–max–min OED for-

mulation both experiments (a) and (b) led to satisfactory results and,

therefore, experiment (b) can be conducted instead of (a). Additionally,

only in the OED–OPD method is it possible to see under which exper-

imental conditions the uncertainty of the system model parameters is

reduced sufficiently such that the optimal worst-case process design

cost becomes profitable.

7 | CONCLUSION

We present a new OED formulation for parameter precision. The

determined optimal experiments are tailored to the intended model

application. The presented formulation is a MMM problem resulting in

a worst-case formulation, and tailors the OED specifically for model-

based process design. The idea of the formulation is to design experi-

ments in such a way that the influence of model parameter uncer-

tainties on the process design is reduced. The three levels—lower,

middle, and upper—constitute, respectively, the process design

optimization, the calculation of the worst-case process design within a

feasible parameter set and the determination of the optimal experi-

mental conditions. Though the methodology is specifically developed

for process design, the min–max–min OED formulation can be

straightforwardly applied to different application domains by changing

the objective function and the constraints of the lower-level, for

example, for process control or clinical trials. Since no general global

solution method exists for nonlinear, nonconvex MMM problems,

herein, we opt for a brute force discretization of the upper-level to

reduce the formulation to a bilevel problem. The resulting max–min

problem is solved globally using a (G)SIP algorithm with equality con-

straints. This approach is possible since a global solution is necessary

only for the middle- and lower-level. A non-global solution of the first

level results only in a suboptimal solution.

By tailoring the experiments to the intended model application,

the novel OED–OPD can show how to properly invest experimental

effort. The case studies show when experimental costs can be

reduced without influencing the end results of process design optimi-

zation or when additional experimental effort is needed for improving

the results of process design optimization, for example, obtaining an

economically profitable process design. The presented numerical case

studies are fairly simple and, therefore, the adaption of the above

methodology to more complex real-life systems should be further

researched. To this end, other formulations can be envisioned. For

example formulations for the description of the parameter feasible set

based on maximum-likelihood statistics might be more accurate and

might lead to quicker computations. A bottle neck of the methodology

is the necessity of a global solution for the lower-level problem. If the

overall OED–OPD problem can be solved using a local solution for

the process design optimization, then the computational effort can be

significantly reduced for the trilevel optimization. Likewise, efficient

global dynamic solvers would allow to apply the proposed methodol-

ogy to a wider class of real-life systems. In the future, instead of a

brute-force method different solvers, for example, gradient-free or

global stochastic solvers, should be applied to generate the upper-

level variables that are further propagated to the bilevel max–min

problem; thus resulting in better overall better CPU times and in opti-

mal experimental conditions closer to the global solutions.

As with most OED formulations, the OED–OPD problem assumes

that the model structure is correct. However, in reality the structural

model mismatch will affect the accuracy of the system model and pro-

cess design. This can yield impractical process designs at the early

stages of model development and therefore, can affect the OED–

OPD results. The structural mismatch can lead to many iterations

between collecting data, model development, and reevaluating the

process design. The extent of the affects of model mismatch on the

OED–OPD formulation should be further examined.
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