000865670 001__ 865670
000865670 005__ 20240709082115.0
000865670 0247_ $$2doi$$a10.1063/1.5116860
000865670 0247_ $$2ISSN$$a0021-9606
000865670 0247_ $$2ISSN$$a1089-7690
000865670 0247_ $$2ISSN$$a1520-9032
000865670 0247_ $$2Handle$$a2128/23156
000865670 0247_ $$2pmid$$apmid:31575188
000865670 0247_ $$2WOS$$aWOS:000488830300051
000865670 0247_ $$2altmetric$$aaltmetric:53664576
000865670 037__ $$aFZJ-2019-05012
000865670 041__ $$aEnglish
000865670 082__ $$a530
000865670 1001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b0
000865670 245__ $$aOptimal motion of triangular magnetocapillary swimmers
000865670 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2019
000865670 3367_ $$2DRIVER$$aarticle
000865670 3367_ $$2DataCite$$aOutput Types/Journal article
000865670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599628062_19886
000865670 3367_ $$2BibTeX$$aARTICLE
000865670 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865670 3367_ $$00$$2EndNote$$aJournal Article
000865670 520__ $$aA system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two, and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing interparticle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations
000865670 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000865670 536__ $$0G:(DE-Juel1)jiek11_20161101$$aDynamics of complex fluids (jiek11_20161101)$$cjiek11_20161101$$fDynamics of complex fluids$$x1
000865670 588__ $$aDataset connected to CrossRef
000865670 7001_ $$0P:(DE-HGF)0$$aZiegler, Sebastian$$b1
000865670 7001_ $$0P:(DE-Juel1)174311$$aXie, Qingguang$$b2
000865670 7001_ $$0P:(DE-HGF)0$$aTrosman, Oleg$$b3
000865670 7001_ $$00000-0002-8812-8900$$aPande, Jayant$$b4
000865670 7001_ $$0P:(DE-HGF)0$$aGrosjean, Galien$$b5
000865670 7001_ $$0P:(DE-HGF)0$$aHubert, Maxime$$b6
000865670 7001_ $$0P:(DE-HGF)0$$aVandewalle, Nicolas$$b7
000865670 7001_ $$0P:(DE-HGF)0$$aSmith, Ana-Sunčana$$b8
000865670 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b9$$eCorresponding author
000865670 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5116860$$gVol. 151, no. 12, p. 124707 -$$n12$$p124707 -$$tThe journal of chemical physics$$v151$$x1089-7690$$y2019
000865670 8564_ $$uhttps://juser.fz-juelich.de/record/865670/files/1.5116860.pdf$$yPublished on 2019-09-27. Available in OpenAccess from 2020-09-27.
000865670 8564_ $$uhttps://juser.fz-juelich.de/record/865670/files/1.5116860.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-09-27. Available in OpenAccess from 2020-09-27.
000865670 909CO $$ooai:juser.fz-juelich.de:865670$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b0$$kFZJ
000865670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174311$$aForschungszentrum Jülich$$b2$$kFZJ
000865670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b9$$kFZJ
000865670 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000865670 9141_ $$y2019
000865670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865670 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865670 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000865670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000865670 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865670 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865670 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865670 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865670 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865670 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865670 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865670 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000865670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865670 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865670 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865670 920__ $$lyes
000865670 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000865670 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000865670 9801_ $$aFullTexts
000865670 980__ $$ajournal
000865670 980__ $$aVDB
000865670 980__ $$aI:(DE-Juel1)IEK-11-20140314
000865670 980__ $$aI:(DE-82)080012_20140620
000865670 980__ $$aUNRESTRICTED
000865670 981__ $$aI:(DE-Juel1)IET-2-20140314