000865670 001__ 865670 000865670 005__ 20240709082115.0 000865670 0247_ $$2doi$$a10.1063/1.5116860 000865670 0247_ $$2ISSN$$a0021-9606 000865670 0247_ $$2ISSN$$a1089-7690 000865670 0247_ $$2ISSN$$a1520-9032 000865670 0247_ $$2Handle$$a2128/23156 000865670 0247_ $$2pmid$$apmid:31575188 000865670 0247_ $$2WOS$$aWOS:000488830300051 000865670 0247_ $$2altmetric$$aaltmetric:53664576 000865670 037__ $$aFZJ-2019-05012 000865670 041__ $$aEnglish 000865670 082__ $$a530 000865670 1001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b0 000865670 245__ $$aOptimal motion of triangular magnetocapillary swimmers 000865670 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2019 000865670 3367_ $$2DRIVER$$aarticle 000865670 3367_ $$2DataCite$$aOutput Types/Journal article 000865670 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599628062_19886 000865670 3367_ $$2BibTeX$$aARTICLE 000865670 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000865670 3367_ $$00$$2EndNote$$aJournal Article 000865670 520__ $$aA system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two, and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing interparticle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations 000865670 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0 000865670 536__ $$0G:(DE-Juel1)jiek11_20161101$$aDynamics of complex fluids (jiek11_20161101)$$cjiek11_20161101$$fDynamics of complex fluids$$x1 000865670 588__ $$aDataset connected to CrossRef 000865670 7001_ $$0P:(DE-HGF)0$$aZiegler, Sebastian$$b1 000865670 7001_ $$0P:(DE-Juel1)174311$$aXie, Qingguang$$b2 000865670 7001_ $$0P:(DE-HGF)0$$aTrosman, Oleg$$b3 000865670 7001_ $$00000-0002-8812-8900$$aPande, Jayant$$b4 000865670 7001_ $$0P:(DE-HGF)0$$aGrosjean, Galien$$b5 000865670 7001_ $$0P:(DE-HGF)0$$aHubert, Maxime$$b6 000865670 7001_ $$0P:(DE-HGF)0$$aVandewalle, Nicolas$$b7 000865670 7001_ $$0P:(DE-HGF)0$$aSmith, Ana-Sunčana$$b8 000865670 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b9$$eCorresponding author 000865670 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5116860$$gVol. 151, no. 12, p. 124707 -$$n12$$p124707 -$$tThe journal of chemical physics$$v151$$x1089-7690$$y2019 000865670 8564_ $$uhttps://juser.fz-juelich.de/record/865670/files/1.5116860.pdf$$yPublished on 2019-09-27. Available in OpenAccess from 2020-09-27. 000865670 8564_ $$uhttps://juser.fz-juelich.de/record/865670/files/1.5116860.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-09-27. Available in OpenAccess from 2020-09-27. 000865670 909CO $$ooai:juser.fz-juelich.de:865670$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000865670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b0$$kFZJ 000865670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174311$$aForschungszentrum Jülich$$b2$$kFZJ 000865670 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b9$$kFZJ 000865670 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000865670 9141_ $$y2019 000865670 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000865670 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000865670 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000865670 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017 000865670 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000865670 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000865670 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000865670 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000865670 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000865670 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000865670 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000865670 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000865670 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000865670 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000865670 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000865670 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000865670 920__ $$lyes 000865670 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 000865670 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1 000865670 9801_ $$aFullTexts 000865670 980__ $$ajournal 000865670 980__ $$aVDB 000865670 980__ $$aI:(DE-Juel1)IEK-11-20140314 000865670 980__ $$aI:(DE-82)080012_20140620 000865670 980__ $$aUNRESTRICTED 000865670 981__ $$aI:(DE-Juel1)IET-2-20140314