001     865670
005     20240709082115.0
024 7 _ |a 10.1063/1.5116860
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 2128/23156
|2 Handle
024 7 _ |a pmid:31575188
|2 pmid
024 7 _ |a WOS:000488830300051
|2 WOS
024 7 _ |a altmetric:53664576
|2 altmetric
037 _ _ |a FZJ-2019-05012
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Sukhov, Alexander
|0 P:(DE-Juel1)169463
|b 0
245 _ _ |a Optimal motion of triangular magnetocapillary swimmers
260 _ _ |a Melville, NY
|c 2019
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599628062_19886
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swimmers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element method. After investigating the equilibrium properties of a single, two, and three particles at the interface, we demonstrate a controlled motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing interparticle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model calculations
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a Dynamics of complex fluids (jiek11_20161101)
|0 G:(DE-Juel1)jiek11_20161101
|c jiek11_20161101
|f Dynamics of complex fluids
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ziegler, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xie, Qingguang
|0 P:(DE-Juel1)174311
|b 2
700 1 _ |a Trosman, Oleg
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pande, Jayant
|0 0000-0002-8812-8900
|b 4
700 1 _ |a Grosjean, Galien
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hubert, Maxime
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vandewalle, Nicolas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Smith, Ana-Sunčana
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 9
|e Corresponding author
773 _ _ |a 10.1063/1.5116860
|g Vol. 151, no. 12, p. 124707 -
|0 PERI:(DE-600)1473050-9
|n 12
|p 124707 -
|t The journal of chemical physics
|v 151
|y 2019
|x 1089-7690
856 4 _ |u https://juser.fz-juelich.de/record/865670/files/1.5116860.pdf
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
856 4 _ |u https://juser.fz-juelich.de/record/865670/files/1.5116860.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-09-27. Available in OpenAccess from 2020-09-27.
909 C O |o oai:juser.fz-juelich.de:865670
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169463
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174311
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21