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ABSTRACT
A system of ferromagnetic particles trapped at a liquid-liquid interface and subjected to a set of magnetic fields (magnetocapillary swim-
mers) is studied numerically using a hybrid method combining the pseudopotential lattice Boltzmann method and the discrete element
method. After investigating the equilibrium properties of a single, two, and three particles at the interface, we demonstrate a controlled
motion of the swimmer formed by three particles. It shows a sharp dependence of the average center-of-mass speed on the frequency
of the time-dependent external magnetic field. Inspired by experiments on magnetocapillary microswimmers, we interpret the obtained
maxima of the swimmer speed by the optimal frequency centered around the characteristic relaxation time of a spherical particle. It is
also shown that the frequency corresponding to the maximum speed grows and the maximum average speed decreases with increasing
interparticle distances at moderate swimmer sizes. The findings of our lattice Boltzmann simulations are supported by bead-spring model
calculations.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5116860., s

I. INTRODUCTION

Microswimmers are a paradigmatic example of active mat-
ter and have come into focus in the last two decades with the
development of nonequilibrium physics.1 Typically, microswim-
mers are associated with motion at low Reynolds numbers, when
self-propulsion dominates over stochastic diffusion, at least in the
case of artificial devices. Actually, because self-propulsion requires
breaking of the time-reversal symmetry in the stroke, the design
of microswimmers often involves a compromise between engineer-
ing a device with the smallest possible degrees of freedom (at least
two) and obtaining a time-irreversible stroke.2 These difficulties
are circumvented in a number of devices;3–5 however, the devices

based on interacting beads gained particular attention starting with
the analysis of a linear arrangement of three spherical beads by
Najafi and Golestanian.6 In this design, the stroke involves a phase-
shift between the contractions and elongations of the two arms
connecting the central bead and the external ones, propelling the
swimmer along the line.7 This model was used to identify some of
the fundamental properties of microswimming including the dif-
ference between pushers and pullers,8,9 of interaction between two
swimmers,10 and of the swimmer with a wall.9,11

An advantage of the bead-based design is its amenability to
experimental investigations. For example, a linear swimmer was
achieved employing three ferromagnetic beads placed on a sur-
face of water, which due to the balancing of repulsive magnetic
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interactions between the induced dipole moments and the capillary
attraction adopt a metastable, linear configuration.12 The oscillation
of the arms is generated by oscillating magnetic fields, such that the
overall force applied to the device remains zero on average.13 This
design is fundamentally different to the original theoretical counter-
part in that the stroke is not imposed but emerges from the balance
of forces on the bead, an effect that was concomitantly incorporated
into the theoretical modeling and simulations.8,14–17

A more stable configuration is a triangular arrangement of
magnetic particles at the interface, a real experimental situation of
which is demonstrated in Fig. 1.18 The particles form an equilateral
triangle at an air-water interface. The size of the triangular arrange-
ment is controlled by an external vertical static magnetic field, while
the swimmer is driven by a time-dependent magnetic field aligned
in the plane of the swimmer.

Numerous efforts involving bead-based devices focused on tri-
angular arrangements that allow for the rotation of the swimmer19

and a richer interaction with external flows.20 The first models were
concerned with modeling the swimming stroke of Chlamydomonas
reinhardtii.21–24 Alternative propulsion mechanisms included mod-
eling a stroke in which the angle between the extendable arms is
fixed25 and a stroke in which both arm lengths and the enclosed
angle vary.26 Further efforts involve a design imposing motion of
three beads on a circle27 or rotating beads.28 In the context of force-
based description, internal driving was recently considered based on
internal forces acting along the lines connecting the beads arranged
in a triangular geometry.19

Although numerous theoretical studies are known for swim-
mers in the form of linear8,11,14,29–31 or equilateral arrangements,32

we are not aware of any simulations that include a rigorous descrip-
tion of the corresponding hydrodynamic flows, the time dependent
deformation of the interface, and thus the related capillary effects.
It turns out to be rather challenging to analytically take the partial
immersion of the swimmer particles in the liquid, particle rota-
tions, interparticle forces, and their surface effects into account.32

In the present study, we aim at bridging this gap by employing the
lattice Boltzmann (LB) method for the dynamics of the fluids cou-
pled to a discrete element method for the particle dynamics. We
perform extensive numerical simulations of triangular magnetocap-
illary swimmers consisting of three ferromagnetic beads. Our LB-
simulations contain the full translational and rotational dynamics
of the particles and the dynamics of the fluid flow and can provide
insight into the fluid-particle interaction. Combining our simula-
tions with a force driven bead spring model of a triangular swim-
mer, we explore the relation between propulsion velocity and the
frequency of driving.

The remainder of this article is organized as follows: in Sec. II,
we present the numerical method which is followed by a system-
atic investigation of the equilibrium particle configuration in the

FIG. 1. Photograph showing the experimental triangular magnetocapillary swim-
mer in a Petri dish.

presence of capillary and magnetic interactions. Then, we demon-
strate our results of the dynamic behavior of the triangular mag-
netocapillary swimmer. Subsequently, we analyze our simulation
results with the help of a semianalytical model and summarize our
findings.

II. SIMULATION METHOD AND SETUP
For the simulation of the fluids, we use a lattice Boltzmann (LB)

method.33 The LB method allows a straightforward implementation
of complex boundary conditions, and due to the locality of the algo-
rithm, it is well suited for the implementation on parallel supercom-
puters. It is based on a discretized version of the Boltzmann equation

f ci (x + ciΔt, t + Δt) = f ci (x, t) + Ωc
i(x, t), (1)

which describes the time evolution of a single-particle distribution
function f ci (x, t) at time t and position x. ci denotes the discrete
velocity vector in the ith direction for fluid component c = {1, 2}.
Here, we use a so-called D3Q19 lattice with i = 1, . . ., 19.34 The
left-hand side of Eq. (1) describes the free streaming of fluid parti-
cles, while their collisions are modeled by a Bhatnagar-Gross-Krook
(BGK) collision operator on the right-hand side as35

Ωc
i(x, t) = −

f ci (x, t) − f eq
i (ρ

c
(x, t),uc(x, t))

τc/Δt
. (2)

Here, f eq
i (ρ

c
(x, t),uc(x, t)) is a third-order equilibrium distribu-

tion function, and macroscopic densities and velocities are given by
ρc(x, t) = ρ0∑i f

c
i (x, t) and uc(x, t) = ∑i f

c
i (x, t)ci/ρc(x, t), respec-

tively (ρ0 is a reference density). τc is the relaxation rate of com-
ponent c, which determines the relaxation of f ci (x, t) toward the
equilibrium. We employ a three-dimensional lattice with the cell size
Δx in space, and the time t is discretized with Δt-steps. The speed of
sound cs = 1/

√
3Δx/Δt depends on the choice of the lattice geome-

try and allows one to obtain the kinematic νc = c2
sΔt(τc/Δt − 1/2) or

the dynamic ηc = νcρc fluid viscosities. For simplicity, we set Δx = Δt
= ρ0 = τc = 1 in the remainder of this paper.

Capillary interactions can be modeled when more than one
fluid species is present. In this case, a mean-field interaction force
between several fluid components is calculated according to the
pseudopotential method of Shan and Chen as36,37

Fc
C(x, t) = −ψc

(x, t)∑
c′
gcc′∑

x′
ψc′
(x′, t)(x′ − x). (3)

Here, c and c′ refer to different fluid components, x′ denotes the
nearest neighbors of the lattice site x, and gcc′ describes a cou-
pling constant determining the surface tension. ψc(x, t) has the
functional form ψc

(x, t) ≡ ψc
(ρc(x, t)) = 1 − e−ρ

c
(x,t). The force

(3) is applied to the fluid component c by adding a shift Δuc(x, t)
= τcFc

C(x, t)/ρc(x, t) to the velocity uc(x, t) in the equilibrium distri-
bution. The method is a diffuse interface method, with an interface
width of typically 5 lattice sites depending weakly on the coupling
strength.38,39 In the binary fluid system, we refer to the fluids as “red”
(r) and “blue” (b).40
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Rigid particles are simulated by solving Newton’s equations of
motion for translational and rotational degrees of freedom by means
of a leap-frog algorithm. The particles are discretized on the lattice
and are coupled to both fluid species by means of a modified bounce-
back boundary condition for multiple fluid components.40–43 When
a lattice site x is occupied by the surface of a particle, the fol-
lowing equation is applied to its neighboring fluid lattice site
(x + ci),

f ci (x + ci, t + 1) = f cī (x + ci, t) + Ωc
ī(x + ci, t) + C, (4)

where C is a linear function of the local velocity of particle surface40

and ī is defined such that ci = −cī. In order to conserve the total
momentum of the system, an additional force Fp and torque Dp is
applied on the particle40 to compensate for the momentum change
of the fluid caused by Eq. (4)

Fp = (2f cī (x + ci, t) + C)cī, (5)

Dp = Fp × r(t), (6)

in which r(t) is a vector directed from the particle center to the lattice
site of reflection. While the particle moves, the configuration of lat-
tice sites occupied by the particle changes. For newly occupied sites,
the fluid on that site is removed and its momentum is added to the
particle through a force40

Fpn = −∑
c
ρc(x, t)uc(x, t). (7)

Vacated lattice sites need to be filled with fluid. In the case of two
fluid components, we define an average density38,40

ρ̄c(x, t) =
1

NFN
∑
iFN
ρc(x + ciFN , t), (8)

where NFN is the number of neighboring fluid sites with coordinates
xiFN = x + ciFN . The fluid on the vacated site is then initialized with
distribution functions38,40

f ci (x, t) = ρcnew ⋅ f
eq
i (usurface(x, t), ρnew(x, t)), (9)

where usurface(x, t) is the local velocity of the particle surface.
ρcnew(x, t) corresponds to ρ̄c(x, t) plus a small correction term to
account for local density gradients imposed by the Shan-Chen
forcing.38,40

When two particles approach each other very closely so that no
lattice node is available between their surfaces to describe the hydro-
dynamic forces, a lubrication correction can be applied.42 How-
ever, we always assure a sufficient resolution and the particles never
get closer than a few Δx in the current paper. Therefore, such a
correction is not required here.

The ferromagnetic particles are considered as rigid spheres with
fixed orientation of the magnetic moment with respect to the par-
ticle. When applying a static magnetic field By along the positive
y-direction (Fig. 2), repulsive dipolar forces are induced. The mag-
netic repulsion is balanced by an attractive capillary force which

FIG. 2. Schematics of the simulated system (box of 1283 cubic cells) including the
alignment of external magnetic fields in three dimensions, numbering of beads,
and interparticle distances Lij in the plane of the interface.

is due to the interface deformation caused by the gravity-induced
immersion of the particles. This leads to a stable arrangement of
the beads after a certain relaxation time. In analogy with the exper-
iments on magnetocapillary swimmers,18,44 we choose the ampli-
tude of the time-dependent magnetic field to be approximately three
times lower than that of the static field to treat it as a modula-
tion. The field B(t) = B0x cosωtex drives the system out of the
local equilibrium leading to a directed collective motion of the
beads.

In our implementation, we assume a homogeneous external
magnetic field B and prescribe a magnetic moment μi = χV B/μ0
to each particle i, where χ is the particle susceptibility, V is its vol-
ume, and μ0 = 4π × 10−7 (in lattice units) corresponds to the mag-
netic permeability of vacuum. The emergent magnetic dipole-dipole
interaction between a pair of particles is then

Uij = −
μ0

4πr3
ij
[3(μi ⋅ eij)(μj ⋅ eij) − (μi ⋅ μj)]. (10)

Here, rij ≡ ∣∣rij∣∣ ≡ ∣∣ri − rj∣∣ is the distance between the centers of
two spheres i, j located at ri and rj, respectively, and eij = (ri −
rj)/∣∣ri − rj∣∣. The magnetic field generated by the magnetic moment
μj at the location of another particle i is

Bi = −
δUij

δμi
=

μ0

4πr3
ij
[3eji(μj ⋅ eji) − μj]. (11)

The resulting magnetic force acting on the ith particle is then Fi
= −∇(−μi ⋅ (Bi + B)) or more explicitly

Fi =
3μ0

4πr4
ij
(μi(μj ⋅ eji) + μj(μi ⋅ eji)

− 5eji(μj ⋅ eji)(μi ⋅ eji) + eji(μi ⋅ μj)). (12)
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Similarly, the magnetic torque acting on the particle i is Ti
= [μi × (Bi + B)] or explicitly

Ti =
μ0

4πr3
ij
⋅ (3(μj ⋅ eji)[μj×eji] − [μi×μj]) + [μi×B]. (13)

The total force and the total torque for each particle include a sum-
mation of expressions (12) and (13) over index j. We note that the
homogeneous external magnetic field B does not produce a net force
on the particles and serves exclusively to change the direction of
the particle magnetic moment. The magnetic forces and the torques
given by Eqs. (12) and (13) are chosen such that they balance capil-
lary forces in the equilibrium. The method with implemented mag-
netic interactions has already been benchmarked and successfully
applied for simulations of magnetocapillary phenomena.45–47

We consider a simulation box consisting of 1283 cubic cells
containing two equally sized fluid lamellae (Fig. 2). Walls with
midgrid bounce back boundary conditions are placed parallel to the
interface at y = 0 and y = 128, whereas for the boundaries in all
other directions, we assume periodicity. All particles have equal radii
R = 5 which assures that they are small on the scale of the simulation
box, but sufficiently large with respect to the interface thickness.45–47

The beads are initially placed near the interface between the red
and blue fluids with densities ρr = ρb = 0.7, deforming thus the
interface of the fluids due to the presence of a body force mimick-
ing gravity acting on the particles. This leads to attractive capillary
forces between the beads. The fluid-fluid coupling constant is chosen
gcc′ = 0.1 giving rise to the numerical surface tension γ ≈ 0.04 in
LB-units (see Ref. 38), which assures a well-defined interface pro-
file on the one hand, and the numerical stability of the method on
the other hand. In all simulations presented here, the two fluids
are considered identical, i.e., with equal viscosity and density. Due
to the limitations of the pseudopotential lattice Boltzmann method,
we are not able to reach realistic values for the surface tension and
density ratios to mimic the air and water phases of the experiment.
Even though we keep the dimensionless parameters such as the Bond
number close to the experimental values wherever possible, we do
expect, in particular, the limitation in the choice of surface ten-
sions to have an impact on the swimmer propulsion. The ratio of
surface tension forces and magnetic forces for parameters used in
the experiment is several orders of magnitude higher than in the
simulations. In addition, even density ratios of the order of 10 or
20 comprise the numerical stability resulting in a smaller available
range of driving frequencies and Bond numbers. The long-range
nature of capillary interactions would require system sizes of at least
10 times the size of the swimmer in order to remove finite size
effects from the simulations.46,48,49 However, due to the inherently
slow motion of the swimmer, our simulations require millions of
time steps and thus the computational time required would be pro-
hibitive. When checking the impact of the finite size effects on the
maximum swimmer speed, we do find only a factor two increase in
the maximum swimming speed even for ten times larger systems
and we do not expect the qualitative behavior of the swimmer to
change substantially. Thus, we expect quantitative differences in the
propulsion of the experimental swimmer as compared to our simu-
lations and therefore refrain from a quantitative comparison. For a
quantitative comparison, an improved multiphase model would be
required.

III. EQUILIBRIUM POSITION OF MAGNETIC PARTICLES
AT A FLUID-FLUID INTERFACE
A. Vertical equilibrium for a single particle

Prior to the simulation of multiple particles, we focus first on
the equilibrium properties of a single particle at the interface. In
the case of a single bead, the homogeneous magnetic field exerts
no magnetic force. The particle reaches its equilibrium and floats
when the gravitational force Fg is balanced by the sum of the sur-
face tension force Fst (or its vertical projection) and the force related
to the hydrostatic pressure Fhp [Fig. 3(a)], i.e., Fy

g = Fy
st + Fy

hp.
More explicitly, the force balance perpendicular to the interface
reads50,51

ρpg
4
3
πR3
= 2πγR sinφc sin ψ + πR3

(ρfl1 − ρfl2)g

×(
2
3

+ cos φc −
1
3

cos3 φc +
hcl

R
sin2 φc) + ρfl2g

4
3
πR3,

(14)

where g denotes the gravitational constant and ρp, ρfl1, ρfl2 are the
densities of the particle and the fluids 1 and 2, respectively. The con-
tact angle θc, which is fixed in the present simulations (θc = π/2), is
the angle between the tangent to the fluid interface and the perpen-
dicular from the particle center of mass, both in the contact point.
φc is defined as the angle between the vertical line and the line from
the center of mass to the contact point. Finally, the angle ψ is the
difference ψ = θc − φc. hc is the immersion depth of the particle, and

FIG. 3. (a) Schematics of a particle floating at a fluid-fluid interface. (b) Immersion
depth hc, measured as a distance of the particle center of mass from the position
of the undisturbed fluid-fluid interface, as a function of the Bond-number (Bo). LB-
simulations are shown by black solid circles, and the analytical solution based on
Eq. (16) is represented by the solid red curve.
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hcl is the height of the perturbed liquid relative to the contact line
[Fig. 3(a)].

Based on Eq. (14), it is straightforward to introduce a dimen-
sionless quantity, the Bond number, which relates the downward and
upward forces

Bo =
(ρp − ρfl1)gR2

γ
, (15)

where it is assumed that the interface is flat (hcl → 0) and the par-
ticle is almost completely immersed in the fluid (φc ≈ 0). Given
the parameters of the experimental situation from Refs. 18 and
44, i.e., particles with a radius of Rexp = 0.25 × 10−3 m, a den-
sity of ρp = 7.8 × 103 kg/m3 (ρg ≈ 0), and the surface tension of
water γ = 73 mN/m, we obtain for the experimental Bond numbers
Boexp

≈ 0.06.
In the present LB-simulations for equal densities of the red and

blue fluids ρfl1 = ρfl2 = 0.7, one obtains BoLB = (ρp − ρfl2)gR2/γ. The
dependence of hc(Bo) is shown in Fig. 3(b). It is linear up to the point
where the particle detaches from the interface. The LB-simulations
are compared with the solution of the equation for the angle φc
obtained from Eq. (14) for hcl ≈ 0 as

cos3 φc − 3 cosφc −
3

2k0BoLB sin(2φc) +
4
k0
− 2 = 0, (16)

where k0 =
(ρfl1−ρfl2)

(ρp−ρfl2)
(note that at the interface ρfl1 − ρfl2 = 0.04ρ0)

and a solution of the form hc ≈ 2R cosφc is found. As inferred
from Fig. 3(b), the LB-simulations are in good agreement with the
solution (16).

In the general case, the Bond number for the detachment of the
particle from the interface is given by Bocrit ≈ 3/2 sin2

(θc/2)∣θc=π/2

≈ 0.75.52 Corrected by the factor due to the presence of the other
fluid, the critical Bond number in the simulations is in line with the
analytical prediction BoLB

crit ≈ 0.21.

B. Equilibrium of two particles
When two ferromagnetic particles are placed at the fluid/fluid

interface at zero magnetic field, they experience a capillary attraction
due to the deformation of the interface. For a pair of small particles,
the capillary potential reads Ucap

= −CcapK0(r/lc) (Ref. 51), where r
is the distance between the centers of the particles, K0(x) is the mod-
ified Bessel function of the second kind, lc =

√
γ

(ρfl1−ρfl2)g
is the cap-

illary length, and Ccap
= 2πγR2

(BoLB
)

2σ2, with σ = 1
3(

ρp

ρp−ρfl2
+ 1).51

Since the capillary length is dependent on the Bond number, i.e.,

lc = R
√
(ρp−ρfl2)

(ρfl1−ρfl2)
1

BoLB , we estimate the minimal capillary length for a

high BoLB = 0.16 in the simulations as lc
2R ≈ 7. In contrast, for a low

value of BoLB = 0.016, we obtain for lc
2R ≈ 22.

In the situation when the interparticle distance r is much
shorter than the capillary length r≪ lc, the capillary potential can be
well approximated by Ucap

≈ Ccap ln(r/lc). For reaching an equilib-
rium, a uniform static magnetic field aligned perpendicularly to the
interface is required since it turns the dipole-dipole interaction to the
repulsive one [Eq. (10), U12(↑↑) = μ0μiμj/(4πr3

ij)], which opposes

the attractive capillary interaction for reaching a finite equilibrium
distance. The total potential thus has the form

U tot
(r ≪ lc) = Ccap ln(

r − a
lc
) +

Cmag

(r − a)3 , (17)

where the term (r − a) accounts for the finite size of the beads, a
= 2R is the minimal distance between the centers of the beads, and
Cmag = μ0μiμj/(4π). Potential (17) is schematically illustrated in Fig. 4
and clarifies the role of the first and second derivatives.

After minimization of Eq. (17), one obtains for the equilibrium
interparticle distance

L12

2R
(r ≪ lc) = 1 +

1
2R

3

√
3Cmag

Ccap

= 1 +
1
2

3

¿
Á
Á
ÁÀ

(
3μ0μ2

S
4πR4 )

(2πγR)(BoLB)2σ2 (
μi
μs
)

2/3

, (18)

where we note that the ratio ( 3μ0μ2
S

4πR4 )/(2πγR) is the ratio of mag-

netic to capillary forces at equilibrium and should be of order one; μS
denotes here the saturated magnetic moment. The equilibrium posi-
tion for interparticle distances well below the capillary length thus
scales as

L12

2R
(r ≪ lc) = 1 +

1
2
(BoLBσ)

−2/3
(
μi
μs
)

2/3

. (19)

When r approaches the capillary length (r ≈ lc), the logarith-
mic approximation for the Bessel function no longer holds. A func-
tion which approximates the Bessel function in this range very well
is
√
π/2e−r/lc/

√
r/lc (Ref. 53). However, an analytical handling of

such a function is complex. An alternative approach is to use an
empirical expression Ucap

≈ −0.45Ccap lc
r−a which fits numerically the

Bessel function in this range well and allows us to write the total
potential as

U tot
(r ≈ lc) = −0.45

lcCcap

r − a
+

Cmag

(r − a)3 . (20)

FIG. 4. Schematics of the magnetocapillary potential given by Eq. (17). The first
derivative ∂Utot/∂r = 0 defines the equilibrium position L for the energy mini-
mum, whereas the second derivative ∂2Utot/∂r2

≡ k determines the strength of
the potential around the equilibrium L.
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Minimization of expression (20) under similar assumptions as of
Eq. (18) yields for the equilibrium L12,

L12

2R
(r ≈ lc) = 1 + 0.68

4
√ρb − ρr

2ρp − ρr
(ρp − ρr)

3/4
(BoLB

)
−3/2
(
μi
μs
). (21)

Figure 5 demonstrates three regimes of the equilibrium L12-
dependence on the strength of the static magnetic field or the
reduced magnetic moment my = μy/μS. The three areas correspond
to experimental observations shown in Fig. 3 of Ref. 54. Below
my ≈ 0.05, the equilibrium interparticle distance becomes “locked.”
This phenomenon is due to capillary bridges,55,56 where a small
amount of liquid causes sticking of particles together because of the
minimized liquid interface. In the range 0.05 <my < 0.2, we observe
different growth dependencies for low and high Bond numbers
since the particles are already separated and L12 is well below lc for
BoLB = 0.016 [Eq. (19)] or approximately around lc for BoLB = 0.16
[Eq. (21)]. Finally, L12 grows linearly for high magnetic moments
which are related to the proximity of L12 to the capillary length, as
given by Eq. (21).

C. Equilibrium of three particles
At last, we investigate the case of three particles. All three

particles are placed onto the interface simultaneously, and a verti-
cal static magnetic field (no time-dependent field so far) is applied
from the very beginning. The initial interparticle distance is set to
Lij
2R(t = 0) = 2.6. From symmetry considerations, we expect an
equilateral triangle in the plane of the interface for the equilibrium
configuration. As evidenced by Fig. 6, the length of the sides of
the triangle Lij remains equal irrespective of the induced magnetic
moment.

An analytical treatment of the problem is more involved since
it requires taking into account the asymmetry of the capillary poten-
tial and the finite size of all three particles. Nevertheless, one can
clearly observe the “locked” range until my ≈ 0.05 and the range of
the linear growth for Lij. As in the case of two particles in Fig. 5, the

FIG. 5. Dependence of the equilibrium interparticle distance L12 on the values
of the induced magnetic moment for two particles and for various Bo-numbers.
The results of LB-simulations at equilibrium are shown by solid symbols, the solid
curve indicates two areas scaling as ∼ m2/3

y [given by Eq. (19)] and ∼my [given by
Eq. (21)]. The dashed line represents a linear ∼my-scaling at a high Bo-number.

FIG. 6. Dependence of the equilibrium interparticle distance Lij on the values
of the induced magnetic moment for three particles and the fixed Bond number
BoLB = 0.16.

present simulations fully recover the measurements demonstrated
in Fig. 6 or Ref. 54. Noteworthy is also the fact that the values of
the magnetic moment for which the transition from the “locked” to
the linear regimes takes place remain quantitatively unchanged for
two and three beads at high Bo = 0.16 (cf. Figs. 5 and 6). The latter
we explain as a compensation of the amount to which the capillary
interactions grow by the increased repulsive magnetic interaction all
due to the presence of the third particle.

IV. DYNAMICS OF A MAGNETOCAPILLARY SWIMMER
A. Directed motion

So far, only static configurations formed by one, two, or three
beads were considered. Now, we intend to investigate the dynam-
ical behavior of the three-particle ensemble that performs directed
motion powered by an external time-dependent magnetic field. The
ensemble is termed a magnetocapillary swimmer.

The simplest stable system which can break the symmetry
required by the scallop theorem is a three-bead swimmer having a
triangular shape (Fig. 2).3 It takes approximately 30 000 time steps
for the X-coordinate of all beads to reach the stable configuration
(cf. onset of the trajectories in Fig. 7). This time is chosen rather
empirically after examining the relaxation dynamics of particles in
the LB-simulations. It assures a full vertical and horizontal equi-
librium for the particles and the interface. Only after this initial
relaxation, the oscillating time-dependent in-plane magnetic field
B(t) = B0x cosωtex is applied. For the amplitudes |B(t)|/|B| ≈ 0.36, we
choose a ratio which is close to the one used in the experiments.18,44

In order to stay well below the critical Bond number for the detach-
ment of the particle from the interface and to still assure a significant
interface deformation, we keep Bo = 0.16.

For characterization of the swimmer motion, we introduce an
average velocity of the center of mass in the nonmoving frame
defined by

⟨v⟩ =
1
3

3

∑
i=1

ri(t + n2π/ω) − ri(t)
n2π/ω

=
1
3

3

∑
i=1

vi, (22)

where n counts the number of the periods of the oscillating field and
ri stands for the coordinates of the beads’ centers.
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FIG. 7. Trajectories of each bead during the swimmer motion. The inset shows
the initial and final positions of the swimmer on the interface. The frequency of the
applied B-field is ω/(2π) = 0.76 (τcs)

−1, where τcs = 95 [Eq. (26)] and the field
ratio |B(t)|/|B| ≈ 0.36.

Figure 7 demonstrates the motion of the swimmer in the case
where the direction of the oscillating field B(t) is fixed along the
X-axis with the fixed given frequency. In this configuration, the
swimmer propagates itself with minor deviations of all beads from
their equilibrium positions and shows a linear motion along the
Z-axis. Careful analysis of all coordinate components reveals that
not only do the Z-coordinates demonstrate visible oscillations but
also the Y-components, i.e., the vertical coordinates, oscillate with
amplitudes close to 0.08R. Finally, since the AC magnetic field
is applied along the line connecting particles 1 and 2 and since
particle 3 is symmetric to both the field and those particles, one
can observe stronger oscillations of the Z-coordinates for beads 1
and 2.

Figure 7 does not answer the question how the particles prop-
agate during the stroke cycle. This issue is clarified in Fig. 8, where
the propagation of the orientation vector (director) ni, coinciding
with the magnetization orientation for each bead, is demonstrated.
As expected, the particles do not spin until the external oscillating
magnetic field starts driving them (after t = 30 000), while upon
switching the B(t)-field on, all three particles start oscillating. Note
that the particles do not fully rotate around their own axes and the
plane of the director oscillations remains always perpendicular to
the net swimmer motion. Although the amplitude of the oscillat-
ing field is of the order of one third of the static field amplitude
|B(t)|/|B| ≈ 0.36, the magnetic forces and torques acting on the beads

FIG. 8. Trajectories of the orientation vector ni for each bead on the short time
scale. The parameters of the simulations are identical with those for Fig. 7.

scale as |Fmagn| ∼ |B2|, resulting therefore in |Fmagn(t)|/|Fmagn| ≈ 0.13.
This explains why the change in the rotational orientation of all the
beads is so weak (ny > nx, nz).

We should point to one significant difference in the propaga-
tion mechanism of the swimmer in the experiments12,13,18,44,54 and
the implementation presented above. In the aforementioned experi-
ments, a set of three magnetic fields was applied: a strong static field
perpendicularly to the interface to induce the magnetic repulsion
between the beads, an in-plane oscillating magnetic field to modify
the local equilibrium and a weak static in-plane field applied under
an angle to the oscillating one to select a unique oscillation mode.18

The action of the three fields led to a strong rotation of the parti-
cles in the plane of the interface. The magnetic forces and the torques
implemented using Eqs. (12) and (13), respectively, are not supposed
to result in any in-plane rotations of the particles and demonstrate
small out-of plane oscillations of the beads (Fig. 8). For this rea-
son, we expect different speeds of propulsion within the present
simulations and the experiments.

B. Frequency dependence of the swimmer motion
The most striking feature of our magnetocapillary swimmer is

its response to changes in frequency of the external driving force.
While not all cyclic driving protocols yield self-propulsion, if we fix
the directions of both the external static and the time-dependent
field as shown in Fig. 2, the average speed ⟨vz⟩ experiences a sharp
peak showing that there is a driving for which the swimmer is most
efficient given its geometry. However, the effect of the geometry is
nontrivial [Fig. 9(e)] as the average speed of swimming at the opti-
mum driving frequency first increases (for Lij < 3 × 2R) and then
decays (for Lij > 3 × 2R).

A similar nonmonotonous frequency response was previously
reported in the experimentally realized linear magnetocapillary
swimmer,12 where, due to the non-Stokesian nature of the device, the
swimming speed demonstrates a true resonance at the characteristic
frequency of the harmonic oscillator τHO with

τHO =

√
mR

k
. (23)

Here, mR = m/2, where m is the mass of the bead, and k is the curva-
ture of the potential between the beads.13 Nonetheless, in this case,
the resonant frequency monotonously decreases with increasing Lij.
In the case of a triangular geometry, the velocity-frequency relation
could not be determined experimentally, while the modeling showed
a more complex behavior as a consequence of the observed inertial
periodic rotation of the beads.57 However, while an interesting direc-
tion to pursue, the peak observed in LB simulations (Fig. 9) cannot
be associated with 1/τHO and actually appears at up to an order of
magnitude smaller frequencies.

Notably, an optimal velocity as a function of frequency was
also found in triangular bead-spring swimmers in the pure Stokes
regime.19 Calculation of the swimming velocity within a perturba-
tive approach to the leading order in R/L provides the dependency
of v ∼ L−2. This dependency, as well as the existence of the peak
velocity in the frequency domain seems to be insensitive to the
geometry of the swimmer and the details of the driving protocol.
Namely, this behavior was also found for the linear swimmer, using
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FIG. 9. (a) Average speed of the center of mass of the swimmer as a function of the frequency of the oscillating field illustrated for various values of Lij obtained by
LB-simulations. The three panels in the middle [(b)–(d)] illustrate the motion of the swimmer for different Lij . Further parameters: BoLB = 0.16, the time-dependent field
is applied along the X-axis (Fig. 2) and the field ratio |B(t)|/|B| ≈ 0.36. (e) Maximum average speed and frequency at maximum speed of the swimmer’s center of mass
as a function of Lij extracted from Fig. 9(a) and further values of Lij . At low Lij , uncertainties of the exact positions of the maximum speed are shown resulting from the
broadened peaks. Simulations performed for Lij lower than 2 × 2R typically result in one or even all the beads sinking since the changing particle orientation strongly
perturbs the highly curved interface which can lead to a detachment of the particle. In contrast, at high Lij > 4 × 2R, the swimmer speed is so low that no visible motion is
observed.

the same methodology.8,14,16,19 However, at the same level of theory,
the resonant frequency turns out to be independent of the swim-
mer size8,16,19 despite the fact that our simulations suggest a more
complex behavior [Fig. 9(e)].

Interestingly, when all orders in R/L are taken into account, for
a linear swimmer,14 an increase in the optimum frequency ωSt with
the interparticle distance L and C1, C2, and C3 being functions of
system parameters,14

ωSt(L) ∼
1
L

√
C1 + C2L + C3L2, (24)

has been reported. This result, obtained in the linear arrangement
of beads, seems to capture the general trends as observed in the
simulations.

To check if such a behavior is expected in a triangular geome-
try, we numerically calculate the swimming velocity of an externally
driven, triangular bead-spring device (Fig. 10), by this avoiding the
truncation of the perturbation series in the orders of R/L (see the
Appendix for details). The model recovers the ∼L−2 dependence of
the maximum speed (Fig. 11)8,14,16,19 as well as the dependence of the
optimal frequency as a function of the increasing distance between
the beads given by Eq. (24) (C1, C2, C3 are here treated as fitting
parameters).

Using dimensional analysis, however, one can show that the
emergent velocity of the swimmer in all Stokes perturbative mod-
els depends only on R/L, A/(kR), and ωτSt , where A denotes the
amplitude of the applied forces. Here, τSt is the characteristic time
scale of relaxation of the swimmer spring,16 relative to the Stokes
drag

τSt =
6πηR
k

. (25)

In the absence of inertia, τSt sets the internal time scale of the swim-
mer. Unfortunately, τSt is not recovered in LB simulations as the
characteristic time associated with the peak speed appears at up to
an order of magnitude larger frequencies.

In fact, we find this peak to be characterized by the time scale
of bead coasting through the fluid τcs,

τcs =
m

6πηR
. (26)

This is a characteristic time for a spherical particle placed in a bulk
fluid needed to come to equilibrium, whose equation of motion is
governed by Newton’s law with a Stokes drag, i.e., mdv/dt = −6πηRv.
As it is clear from Eq. (26), the relaxation time changes either upon
variation of the bead radius or the fluid viscosity, hence the prop-
erties of the fluid. Indeed, scaling frequencies using 1/τcs allows us

FIG. 10. Sketch of the initial configuration of the swimmer modeled using the
Felderhof approach.
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FIG. 11. (a) Average speed of the center of mass of the triangular swimmer (Fig. 10) on the driving frequency obtained numerically within the bead-spring model [Eq. (A3)].
Parameter used: A/(kR) = 1.0. (b) Maximum speed (blue squares) and frequency corresponding to the maximum speed of the swimmer (pink dots) determined from the
bead-spring model. Fits are made using |vz|max(L) = A1/L2 (average speed, A1 a fitting parameter) and Eq. (24).

to collapse all the peaks in Fig. 9(a), suggesting that the optimal
swimming speed in our LB simulations arises from integrating coast-
ing in most appropriate manner. Consequently, the average maxi-
mum speeds are reached for moderate Lij (≈3.2 × 2R) and are of
the order of ≈0.001 ⋅ 2R per period of the oscillating field, as seen
in Fig. 9(a). This result is remarkable because it shows the emer-
gence of inertial effects which cannot be captured by a simple Stokes
dynamics.

The Stokes model (see the Appendix) is, however, capable of
reproducing several central results of LB-simulations: (1) The swim-
mer propagates perpendicularly to the excitation [Figs. 9(b)–9(e)];
(2) The average speed of swimming decreases with increasing inter-
particle distance in L > 3 × 2R, which is in agreement with the
far-field description of hydrodynamics in the model. For small Lij,
the LB simulations behave differently due to short-range capillary
interactions between the spheres which cannot be described by the
bead-spring model. Notably, higher order treatments of the hydro-
dynamic interactions do not change the trend in the frequency
response. (3) The peak in the velocity-frequency response is sen-
sitive to the interparticle distance. (4) The characteristic frequency
grows with increasing L. As for the behavior of the average speed of
swimming, the LB-simulations are expected to behave differently for
small L.

Besides the dependency of speed on the frequency [Fig. 9(a)],
several additional effects cannot be captured by our Stokes modes.
Namely, at small Lij (≈2.3 × 2R), the swimmer moves efficiently for
a wide range of frequencies and the main peak is broadened by the
relative proximity of the particles.

The motion at low frequencies is, furthermore, dominated by
the sizable deformations of the interface, and the capillary potential
has a much more complex structure than described by Eqs. (17) and
(20), making the determination of the spring constant even more
challenging, given the current setup of the simulation. Importantly,

the deformations of the interface introduce an additional time scale
τint,

τint =
Rη
γ

. (27)

Interestingly, using this time scale equally well collapses the peaks
shown in Fig. 9(a), suggesting that this could be the relevant process
dominating the dynamics. However, our test simulations with a sig-
nificantly larger box do not reproduce this result, while the coasting
time scale reappears as the relevant one in the system.

V. SUMMARY
In this study, we performed extensive lattice Boltzmann simu-

lations of magnetocapillary swimmers consisting of three ferromag-
netic beads trapped at a fluid/fluid interface. The simulations are
inspired by the experiments reported in Refs. 18, 44, and 54, where
ferromagnetic beads placed at the water/air interface were driven
by magnetic fields and reached propulsion speeds of hundreds of
micrometer per second.

To match the corresponding regimes for the capillary poten-
tials of the experiments, we studied equilibrium properties of a single
(Fig. 3), two (Fig. 5), and three particles (Fig. 6) at the interface. The
resulting dependence of the center-to-center distance for two and
three particles on the strength of the magnetic moment unveiled
three main regimes that are in agreement with the experimental
observations (Figs. 3 and 6 of Ref. 54).

Adding a smaller oscillating magnetic field drives the sys-
tem out of the local equilibrium and results in a directed motion
of the three-bead swimmer (Fig. 7). By fixing the direction of
the oscillating field, we demonstrated [Fig. 9(a)] that the average
speed of the swimmer nonmonotonously depends on the frequency
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of the B(t)-field and reaches its maximum at approximately 0.001
2R/τLB

v for frequencies in the vicinity of the inverse coasting time
defined by Eq. (26). The emergence of this time scale is interest-
ing as the swimmer operates in near the Stokes regime, yet the
inertial effects start to appear. Consequently, the time scale of the
swimmer characteristic for Re = 08 is not determined as the rele-
vant one although certain elements of the Stoksian dynamics are
recovered. Furthermore, the motion observed in LB simulations is
significantly different to experiments with magnetocapillary swim-
mers (Refs. 18, 44, and 54) since in these systems, the motion is
dominated by inertia and a classical resonance is observed, at least in
the linear geometry. The understanding of the emergent time scale
τcs requires thus further theoretical investigations which we hope to
undertake in future. Moreover, as revealed by our preliminary LB-
simulations including several optimized parameters, further regimes
of motion are feasible: (i) a motion of essentially the same swim-
mer as presented above, however, at significantly lower frequencies
of the B(t)-field achieved by a reduced ratio of vertical magnetic-to
surface tension forces and (ii) a swimmer motion obtained assum-
ing a finite nonzero ferromagnetic component of the net mag-
netization of the beads. The detailed study of the new regimes
will be presented elsewhere which should help better understand
the swimmer motion observed in the experiments (Refs. 18, 44,
and 54).

The LB-simulations performed here also point out to the
importance of simultaneous optimization of the swimmer’s geom-
etry and driving which is a very important property for applications:
swimmers with different interparticle distances (Lij) might be con-
trolled independently by the application of AC-fields with distinct
frequencies. In the context of the current work, however, besides
identifying these interesting phenomena, we clearly establish lattice
Boltzmann simulations as a technique for studying microswimming
on liquid interfaces, which hitherto was not possible.
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APPENDIX: TRIANGULAR BEAD-SPRING SWIMMER
IN THE STOKES REGIME

We assume three beads of equal radii R pairwise connected
by harmonic springs of spring constant k and equilibrium length L
(Fig. 10), such that the potential energy of a spring connecting two
beads at positions ri and rj reads

ϕij ≡ ϕ(ri − rj) =
1
2
k(∣ri − rj∣ − L)2. (A1)

In addition to the spring constant k, external forces denoted by
Fi(t) act on each bead i, satisfying the condition that (a) the sum

over all forces Ftot(t) = ∑3
i=1 Fi(t) = 0 as well as (b) the result-

ing torque Ttot(t) = ∑3
i=1 ri × Fi(t) = 0 both vanish at each time

step. Note that the origin of the coordinate system relative to which
the torque is calculated is irrelevant when (a) holds. For the cal-
culations below, we specifically set the swimmer in the XZ-plane
and exert a sinusoidal force specified by F1(t) = A sin(ωt)ex on the
first bead. Consequently, forces on the other two beads are set by
the constraints (a) and (b). Notably, this protocol allows only for
pure translations of the swimmer’s center of mass in the steady
state.

In the regime of the bead radius R ≪ L, the hydrodynamic
interaction between the beads is given by the Oseen tensor58

T̂(rj−rk)=
1

8πη∣rj − rk∣
(̂I+
(rj − rk)⊗ (rj − rk)

(rj − rk)2 ), (A2)

and the equation of motion for each bead is governed by the Stokes
law, such that the system is described by the set of equations of
motion describing the time evolution of the position ri of each bead

drj
dt
= νj
⎛

⎝
Fj(t) +∑

k≠j
G(rj − rk)

⎞

⎠

+∑
k≠j

T̂(rj − rk)
⎛

⎝
Fk(t) +∑

l≠k
G(rk − rl)

⎞

⎠
, (A3)

where νj = 1
6πηR and G is the spring force G(r)∶= −∇ϕ(r). The first

(mobility) term of Eq. (A3) describes the motion due to external and
spring forces directly acting on the beads, while the second accounts
for the hydrodynamic interactions between the beads.

The swimming velocity emerges from inserting the solution of
Eq. (A3) into Eq. (22). With the above-prescribed driving, the swim-
mer’s motion is found always to be associated with a translation in
the Z-direction without a net rotation.
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