000865742 001__ 865742
000865742 005__ 20240313094843.0
000865742 037__ $$aFZJ-2019-05059
000865742 041__ $$aEnglish
000865742 1001_ $$0P:(DE-Juel1)176305$$aLinssen, Charl$$b0$$eCorresponding author$$ufzj
000865742 1112_ $$aNEST Conference 2019: A Forum for Users and Developers$$cAas$$d2019-06-24 - 2019-06-25$$wNorway
000865742 245__ $$aNESTML: An extensible modeling language for biologically plausible neural networks
000865742 260__ $$c2019
000865742 3367_ $$033$$2EndNote$$aConference Paper
000865742 3367_ $$2BibTeX$$aINPROCEEDINGS
000865742 3367_ $$2DRIVER$$aconferenceObject
000865742 3367_ $$2ORCID$$aCONFERENCE_POSTER
000865742 3367_ $$2DataCite$$aOutput Types/Conference Poster
000865742 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1581580278_12469$$xAfter Call
000865742 520__ $$a<p>NESTML [1, 2] was developed to address the maintainability issues that follow from an increasing number of models, model variants, and an increased model complexity in computational neuroscience. Our aim is to ease the modelling process for neuroscientists both with and without prior training in computer science. This is achieved without compromising on performance by automatic source-code generation, allowing the same model file to target different hardware or software platforms by changing a single command-line parameter. While originally developed in the context of the NEST Simulator [3], the language itself as well as the associated toolchain are lightweight, modular and extensible, by virtue of using a parser generator and internal abstract syntax tree (AST) representation, which can be operated on using well-known patterns such as visitors and rewriting.</p><p>A typical workflow consists of the following steps: Initially, a model of interest is identified. This model might describe the dynamical behaviour of a single neuron, or the plasticity rules concerning a synapse. The model description is typically in mathematical or textual form, and needs to be converted by the neuroscientist into a format following the NESTML syntax. It is then processed by invoking the toolchain, which generates optimised code for the target platform (e.g. NEST running on a high-performance computing cluster). That code is then dynamically loaded or compiled as part of the simulation framework (in this case, NEST). The model is now ready for use in the simulator, and can be instantiated within a simulation script, written e.g. using the PyNEST API [4], before starting the simulation and performing subsequent analysis.</p><p>NESTML is open sourced under the terms of the GNU General Public License v2.0 and is publicly available at https://github.com/nest/nestml. Extensive documentation and automated testing are in place, both for the language itself as well as the associated processing toolchain. Active user support is provided via the GitHub issue tracker and the NEST user mailing list.</p><h2>References</h2><ol><li>D. Plotnikov et al. (2016) Modellierung March 2-4 2016, Karlsruhe, Germany. 93–108. doi:10.5281/zenodo.1412345</li><li>K. Perun et al. (2018). Version 2.4, Zenodo. doi:10.5281/zenodo.1319653</li><li>M.-O. Gewaltig & M. Diesmann (2007) Scholarpedia 2(4), 1430. doi:10.4249/scholarpedia.1430</li><li>Y.V. Zaytsev & A. Morrison (2014) Front. Neuroinform. 8:23. doi:10.3389/fninf.2014.00023</li></ol>
000865742 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000865742 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000865742 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000865742 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000865742 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
000865742 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b1$$ufzj
000865742 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2$$ufzj
000865742 909CO $$ooai:juser.fz-juelich.de:865742$$pec_fundedresources$$pVDB$$popenaire
000865742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176305$$aForschungszentrum Jülich$$b0$$kFZJ
000865742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich$$b1$$kFZJ
000865742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
000865742 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000865742 9141_ $$y2019
000865742 920__ $$lyes
000865742 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000865742 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000865742 980__ $$aposter
000865742 980__ $$aVDB
000865742 980__ $$aI:(DE-Juel1)INM-6-20090406
000865742 980__ $$aI:(DE-Juel1)JSC-20090406
000865742 980__ $$aUNRESTRICTED
000865742 981__ $$aI:(DE-Juel1)IAS-6-20130828