000865759 001__ 865759
000865759 005__ 20240313103128.0
000865759 0247_ $$2Handle$$a2128/23095
000865759 037__ $$aFZJ-2019-05075
000865759 041__ $$aEnglish
000865759 1001_ $$0P:(DE-Juel1)178641$$aBerling, David$$b0$$eCorresponding author
000865759 1112_ $$aBernstein Conference 2019$$cBerlin$$d2019-09-17 - 2019-09-20$$wGermany
000865759 245__ $$aCan Spatio-Temporal Spike Patterns Found in Experimental Data be Explained by the Synfire Chain Model
000865759 260__ $$c2019
000865759 3367_ $$033$$2EndNote$$aConference Paper
000865759 3367_ $$2BibTeX$$aINPROCEEDINGS
000865759 3367_ $$2DRIVER$$aconferenceObject
000865759 3367_ $$2ORCID$$aCONFERENCE_POSTER
000865759 3367_ $$2DataCite$$aOutput Types/Conference Poster
000865759 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1571216253_10839$$xOther
000865759 502__ $$cRWTH Aachen
000865759 520__ $$aTo investigate cortical network interactions during a reach-to-grasp task [1], we analyzed spatio-temporal patterns (STPs) in massively parallel spike data. Using the SPADE analysis [2,3], we found significant STPs in about 100 simultaneously recorded single units. For each of the four task types, we observe up to 50 patterns during the movement period. The STPs differ in spatial and temporal arrangement of spikes, and are composed of 2 to 6 units which belong to the same set of maximal 10 units. Here, we investigate if the characteristics of the found STPs can be explained by a simple assembly network model, the synfire chain (SFC) model [4].In the SFC model, neurons form groups connected in a feedforward, highly convergent-divergent manner. Synchronous stimulation of neurons in the first group results in volleys of spikes reliably propagating through the chain [5]. Spike recordings from a subset of cells in this model would reveal recurring STPs similar to those observed in the data, provided the same SFCs are repeatedly stimulated.We investigate if the observed STP statistics is consistent with a network model where SFCs are spatially distributed in accordance with biologically realistic connection probabilities [6,7]. In the context of this model, we evaluate the probability of observing multiple neurons involved in the same STP by means of a 10x10 Utah electrode array spanning 4x4 mm2 of cortical space. We explore how model parameters such as the neuron density, the distance dependence of lateral connections between cortical neurons and the spatial reach of extracellular electrodes constrain the spatial arrangement of SFCs (see figure) and the number of observable SFC neurons.In future work, we will equip the current network model with a temporal dynamics [8], and further, embed it into a balanced network [similar to 9] to study the temporal characteristics of STPs.
000865759 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000865759 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000865759 536__ $$0G:(GEPRIS)368482240$$aGRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)$$c368482240$$x2
000865759 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x3
000865759 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000865759 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x5
000865759 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x6
000865759 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b1
000865759 7001_ $$0P:(DE-Juel1)176920$$aKleinjohann, Alexander$$b2
000865759 7001_ $$0P:(DE-Juel1)171932$$aStella, Alessandra$$b3
000865759 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b4
000865759 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5
000865759 8564_ $$uhttps://juser.fz-juelich.de/record/865759/files/bernstein_berling.pdf$$yOpenAccess
000865759 909CO $$ooai:juser.fz-juelich.de:865759$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000865759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178641$$aForschungszentrum Jülich$$b0$$kFZJ
000865759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b1$$kFZJ
000865759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176920$$aForschungszentrum Jülich$$b2$$kFZJ
000865759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171932$$aForschungszentrum Jülich$$b3$$kFZJ
000865759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b4$$kFZJ
000865759 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
000865759 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000865759 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000865759 9141_ $$y2019
000865759 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865759 920__ $$lyes
000865759 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000865759 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000865759 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000865759 9801_ $$aFullTexts
000865759 980__ $$aposter
000865759 980__ $$aVDB
000865759 980__ $$aUNRESTRICTED
000865759 980__ $$aI:(DE-Juel1)INM-6-20090406
000865759 980__ $$aI:(DE-Juel1)IAS-6-20130828
000865759 980__ $$aI:(DE-Juel1)INM-10-20170113
000865759 981__ $$aI:(DE-Juel1)IAS-6-20130828