001     865759
005     20240313103128.0
024 7 _ |a 2128/23095
|2 Handle
037 _ _ |a FZJ-2019-05075
041 _ _ |a English
100 1 _ |a Berling, David
|0 P:(DE-Juel1)178641
|b 0
|e Corresponding author
111 2 _ |a Bernstein Conference 2019
|c Berlin
|d 2019-09-17 - 2019-09-20
|w Germany
245 _ _ |a Can Spatio-Temporal Spike Patterns Found in Experimental Data be Explained by the Synfire Chain Model
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1571216253_10839
|2 PUB:(DE-HGF)
|x Other
502 _ _ |c RWTH Aachen
520 _ _ |a To investigate cortical network interactions during a reach-to-grasp task [1], we analyzed spatio-temporal patterns (STPs) in massively parallel spike data. Using the SPADE analysis [2,3], we found significant STPs in about 100 simultaneously recorded single units. For each of the four task types, we observe up to 50 patterns during the movement period. The STPs differ in spatial and temporal arrangement of spikes, and are composed of 2 to 6 units which belong to the same set of maximal 10 units. Here, we investigate if the characteristics of the found STPs can be explained by a simple assembly network model, the synfire chain (SFC) model [4].In the SFC model, neurons form groups connected in a feedforward, highly convergent-divergent manner. Synchronous stimulation of neurons in the first group results in volleys of spikes reliably propagating through the chain [5]. Spike recordings from a subset of cells in this model would reveal recurring STPs similar to those observed in the data, provided the same SFCs are repeatedly stimulated.We investigate if the observed STP statistics is consistent with a network model where SFCs are spatially distributed in accordance with biologically realistic connection probabilities [6,7]. In the context of this model, we evaluate the probability of observing multiple neurons involved in the same STP by means of a 10x10 Utah electrode array spanning 4x4 mm2 of cortical space. We explore how model parameters such as the neuron density, the distance dependence of lateral connections between cortical neurons and the spatial reach of extracellular electrodes constrain the spatial arrangement of SFCs (see figure) and the number of observable SFC neurons.In future work, we will equip the current network model with a temporal dynamics [8], and further, embed it into a balanced network [similar to 9] to study the temporal characteristics of STPs.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|x 1
|f POF III
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 2
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 3
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 4
|f H2020-SGA-FETFLAG-HBP-2017
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|x 5
|f Advanced Computing Architectures
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 6
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 1
700 1 _ |a Kleinjohann, Alexander
|0 P:(DE-Juel1)176920
|b 2
700 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 3
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 4
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 5
856 4 _ |u https://juser.fz-juelich.de/record/865759/files/bernstein_berling.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865759
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176920
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21