001     865828
005     20210130003150.0
024 7 _ |a 10.1002/hbm.24838
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/23996
|2 Handle
024 7 _ |a altmetric:69068293
|2 altmetric
024 7 _ |a pmid:31633254
|2 pmid
024 7 _ |a WOS:000491156400001
|2 WOS
037 _ _ |a FZJ-2019-05119
082 _ _ |a 610
100 1 _ |a Adhikari, Bhim M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effects of Ketamine and Midazolam on resting state connectivity and comparison with ENIGMA connectivity deficit patterns in schizophrenia
260 _ _ |a New York, NY
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579705204_19971
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a NIH. Grant Numbers: T32MH067533, R01MH085646, R01DA027680, R01MH112180, R01EB015611, U01MH108148, U54EB020403
520 _ _ |a Subanesthetic administration of ketamine is a pharmacological model to elicit positiveand negative symptoms of psychosis in healthy volunteers. We used resting statepharmacological functional MRI (rsPhfMRI) to identify cerebral networks affected by ketamineand compared them to the functional connectivity (FC) in schizophrenia. Ketamine can producesedation and we contrasted its effects with the effects of the anxiolytic drug midazolam.Thirty healthy male volunteers (age=19-37 years) underwent a randomized, three-way,cross-over study consisting of three imaging sessions, with 48 hours between sessions. A sessionconsisted of a control period followed by infusion of placebo or ketamine or midazolam. TheENIGMA rsfMRI pipeline was used to derive two long distance (seed-based and dualregression)and one local (regional homogeneity, ReHo) FC measures. Ketamine inducedsignificant reductions in the connectivity of the salience network (Cohen’s d:1.13±0.28,p=4.0×10-3), auditory network (d: 0.67±0.26, p=0.04) and default mode network (DMN,d:0.63±0.26, p=0.05). Midazolam significantly reduced connectivity in the DMN (d:0.77±0.27,p=0.03). The effect sizes for ketamine for resting networks showed a positive correlation(r=0.59, p=0.07) with the effect sizes for schizophrenia related deficits derived from ENIGMA’sstudy of 261 patients and 327 controls. Effect sizes for midazolam were not correlated with theschizophrenia pattern (r=-0.17, p=0.65). The subtraction of ketamine and midazolam patternsshowed a significant positive correlation with the pattern of schizophrenia deficits (r=0.68,p=0.03).RsPhfMRI reliably detected the shared and divergent pharmacological actions ofketamine and midazolam on cerebral networks. The pattern of disconnectivity produced byketamine was positively correlated with the pattern of connectivity deficits observed inschizophrenia, suggesting a brain functional basis for previously poorly understood effects of thedrug.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dukart, Juergen
|0 P:(DE-Juel1)177772
|b 1
700 1 _ |a Hipp, Joerg F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Forsyth, Anna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a McMillan, Rebecca
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Muthukumaraswamy, Suresh D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ryan, Meghann C.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Elliot Hong, L.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 8
|u fzj
700 1 _ |a Jahanshad, Neda
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Thompson, Paul M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rowland, Laura M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kochunov, Peter
|0 P:(DE-HGF)0
|b 12
|e Corresponding author
773 _ _ |a 10.1002/hbm.24838
|g p. hbm.24838
|0 PERI:(DE-600)1492703-2
|n 3
|p 767-778
|t Human brain mapping
|v 41
|y 2020
|x 1065-9471
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865828/files/Adhikari_et_al-2020-Human_Brain_Mapping.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865828/files/Adhikari_et_al-2020-Human_Brain_Mapping.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865828
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21