001     865860
005     20210130003203.0
024 7 _ |a 10.1016/j.envpol.2019.113124
|2 doi
024 7 _ |a 0013-9327
|2 ISSN
024 7 _ |a 0269-7491
|2 ISSN
024 7 _ |a 1873-6424
|2 ISSN
024 7 _ |a 1878-2450
|2 ISSN
024 7 _ |a pmid:31622956
|2 pmid
024 7 _ |a WOS:000499733500030
|2 WOS
037 _ _ |a FZJ-2019-05148
082 _ _ |a 690
100 1 _ |a Adrian, Yorck F.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571646344_26206
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The transport and retention behavior of polymer- (PVP-AgNP) and surfactant-stabilized (AgPURE) silver nanoparticles in carbonate-dominated saturated and unconsolidated porous media was studied at the laboratory scale. Initial column experiments were conducted to investigate the influence of chemical heterogeneity (CH) and nano-scale surface roughness (NR) arising from mixtures of clean, positively charged calcium carbonate sand (CCS), and negatively charged quartz sands. Additional column experiments were performed to elucidate the impact of CH and NR arising from the presence and absence of soil organic matter (SOM) on a natural carbonate-dominated aquifer material. The role of the nanoparticle capping agent was examined under all conditions tested in the column experiments. Nanoparticle transport was well described using a numerical model that facilitated blocking on one or two retention sites. Results demonstrate that an increase in CCS content in the artificially mixed porous medium leads to delayed breakthrough of the AgNPs, although AgPURE was much less affected by the CCS content than PVP-AgNPs. Interestingly, only a small portion of the solid surface area contributed to AgNP retention, even on positively charged CCS, due to the presence of NR which weakened the adhesive interaction. The presence of SOM enhanced the retention of AgPURE on the natural carbonate-dominated aquifer material, which can be a result of hydrophobic or hydrophilic interactions or due to cation bridging. Surprisingly, SOM had no significant impact on PVP-AgNP retention, which suggests that a reduction in electrostatic repulsion due to the presence of SOM outweighs the relative importance of other binding mechanisms. Our findings are important for future studies related to AgNP transport in shallow unconsolidated calcareous and siliceous sands.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schneidewind, Uwe
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bradford, Scott A.
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Šimůnek, Jirka
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 4
700 1 _ |a Azzam, Rafig
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.envpol.2019.113124
|g Vol. 255, p. 113124 -
|0 PERI:(DE-600)2013037-5
|n Part 1
|p 113124 -
|t Environmental pollution
|v 255
|y 2019
|x 0269-7491
856 4 _ |u https://juser.fz-juelich.de/record/865860/files/Adrian%20et%20al%20Env%20Poll%202019.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865860/files/Adrian%20et%20al%20Env%20Poll%202019.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:865860
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129484
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON POLLUT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21