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A B S T R A C T

There is significant interest in the development and application of deep neural networks (DNNs) to neuroimaging

data. A growing literature suggests that DNNs outperform their classical counterparts in a variety of neuroimaging

applications, yet there are few direct comparisons of relative utility. Here, we compared the performance of three

DNN architectures and a classical machine learning algorithm (kernel regression) in predicting individual phe-

notypes from whole-brain resting-state functional connectivity (RSFC) patterns. One of the DNNs was a generic

fully-connected feedforward neural network, while the other two DNNs were recently published approaches

specifically designed to exploit the structure of connectome data. By using a combined sample of almost 10,000

participants from the Human Connectome Project (HCP) and UK Biobank, we showed that the three DNNs and

kernel regression achieved similar performance across a wide range of behavioral and demographic measures.

Furthermore, the generic feedforward neural network exhibited similar performance to the two state-of-the-art

connectome-specific DNNs. When predicting fluid intelligence in the UK Biobank, performance of all algo-

rithms dramatically improved when sample size increased from 100 to 1000 subjects. Improvement was smaller,

but still significant, when sample size increased from 1000 to 5000 subjects. Importantly, kernel regression was

competitive across all sample sizes. Overall, our study suggests that kernel regression is as effective as DNNs for

RSFC-based behavioral prediction, while incurring significantly lower computational costs. Therefore, kernel

regression might serve as a useful baseline algorithm for future studies.

1. Introduction

Deep neural networks (DNNs) have enjoyed tremendous success in

machine learning (Lecun et al., 2015). As such, there has been significant

interest in the application of DNNs to neuroscience research. DNNs have

been applied to neuroscience in at least two main ways. First, deep

learning models have been used to simulate actual brain mechanisms,

such as in vision (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,

2014; Eickenberg et al., 2017) and auditory perception (Kell et al., 2018).

Second, DNNs have been applied as tools to analyze neuroscience data,

including lesion and tumor segmentation (Pinto et al., 2016; Havaei

et al., 2017; Kamnitsas et al., 2017b; G. Zhao et al., 2018a), anatomical

segmentation (Wachinger et al., 2018; X. Zhao et al., 2018b), image

modality/quality transfer (Bahrami et al., 2016; Nie et al., 2017; Blum-

berg et al., 2018), image registration (Yang et al., 2017; Dalca et al.,

2018), as well as behavioral and disease prediction (Plis et al., 2014; van
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der Burgh et al., 2017; Vieira et al., 2017; Nguyen et al., 2018).

Deep neural networks can performwell in certain scenarios and tasks,

where large quantities of data are unavailable, e.g., winning multiple

MICCAI predictive modeling challenges involving image segmentation

(Choi et al., 2016; Kamnitsas et al., 2017a, Hongwei Li et al., 2018a). Yet,

the conventional wisdom is that DNNs perform especially well when

applied to well-powered samples, for instance, the 14 million images in

ImageNet (Russakovsky et al., 2015) and Google 1 Billion Word Corpus

(Chelba et al., 2014). However, in many neuroimaging applications, the

available data often only involve hundreds or thousands of participants,

while the associated feature dimensions can be significantly larger, such

as entries of connectivity matrices with upwards of 100,000 edges.

Consequently, we hypothesize that in certain neuroimaging applications,

DNNs might not be the optimal choice for a machine learning problem

(Bzdok and Yeo, 2017). Here, we investigated whether DNNs can

outperform classical machine learning for behavioral prediction using

resting-state functional connectivity (RSFC).

RSFC measures the synchrony of resting-state functional magnetic

resonance image (rs-fMRI) signals between brain regions (Biswal et al.,

1995; Fox and Raichle, 2007; Buckner et al., 2013), while participants

are lying at rest without any explicit task. RSFC has been widely used for

exploring human brain organization and mental disorders (Smith et al.,

2009; Assaf et al., 2010; Power et al., 2011; Yeo et al., 2011; Bertolero

et al., 2017). For a given brain parcellation scheme (e.g., Shen et al.,

2013; Gordon et al., 2016; Glasser et al., 2017; Eickhoff et al., 2018), the

parcels can be used as regions of interest (ROIs), such that a whole brain

(or cortical) RSFC matrix can be computed for each participant. Each

entry of the RSFC matrix corresponds to the strength of functional con-

nectivity between two brain regions. In recent years, one of the most

influential developments in neuroimaging has been the use of the RSFC

matrices for predicting the attributes (e.g., age or fluid intelligence) of

individual participants (Dosenbach et al., 2010; Finn et al., 2015; Smith

et al., 2015; Rosenberg et al., 2016; Dubois et al., 2018; Reinen et al.,

2018; Weis et al., 2019). Consequently, there have been many studies

developing new techniques to improve RSFC-based behavioral prediction

(Amico and Go~ni, 2018; Nostro et al., 2018; Parisot et al., 2018; Kashyap

et al., 2019; Yoo et al., 2019).

In this work, we compared kernel regression with three DNN archi-

tectures in RSFC-based behavioral prediction. Kernel regression is a non-

parametric classical machine learning algorithm (Murphy, 2012) that has

previously been utilized in various neuroimaging prediction problems,

including RSFC-based behavioral prediction (Raz et al., 2017; Zhu et al.,

2017; Kong et al., 2019; Li et al., 2019). Our three DNN implementations

included a generic, fully-connected feedforward neural network, and two

state-of-the-art DNNs specifically developed for RSFC-based prediction

(Kawahara et al., 2017; Parisot et al., 2017, 2018). An initial version of

this study utilizing only the fluid intelligence measure in the HCP dataset

has been previously presented at a workshop (He et al., 2018). By using

RSFC data from nearly 10,000 participants and a broad range of behav-

ioral (and demographic) measures from the HCP (Smith et al., 2013; Van

Essen et al., 2013) and UK Biobank (Sudlow et al., 2015; Miller et al.,

2016), this current extended study represents one of the largest empirical

evaluations of DNN’s utility in RSFC-based fingerprinting.

2. Methods

2.1. Datasets

Two datasets were considered: the Human Connectome Project (HCP)

S1200 release (Van Essen et al., 2013) and the UK Biobank (Sudlow et al.,

2015; Miller et al., 2016). Both datasets contained multiple types of

neuroimaging data, including structural MRI, rs-fMRI, and multiple

behavioral and demographic measures for each subject.

HCP S1200 release comprised 1206 healthy young adults (age

22–35). There were 1094 subjects with both structural MRI and rs-fMRI.

Both structural MRI and rs-fMRI were acquired on a customized Siemens

3T “Connectome Skyra” scanner at Washington University at St. Louis.

The structural MRI was 0.7mm isotropic. The rs-fMRI was 2mm

isotropic with TR of 0.72s and 1200 frames per run (14.4min). Each

subject had two sessions of rs-fMRI, and each session contained two rs-

fMRI runs. A number of behavioral measures were also collected by

HCP. More details can be found elsewhere (Van Essen et al., 2012; Barch

et al., 2013; Smith et al., 2013).

The UK Biobank is a prospective epidemiological study that has

recruited 500,000 adults (age 40–69) between 2006 and 2010 (Sudlow

et al., 2015). 100,000 of these 500,000 participants will be brought back

for multimodal imaging by 2022 (Miller et al., 2016). Here we consid-

ered an initial release of 10,065 subjects with both structural MRI and

rs-fMRI data. Both structural MRI and rs-fMRI were acquired on

harmonized Siemens 3T Skyra scanners at three UK Biobank imaging

centres (Cheadle Manchester, Newcastle, and Reading). The structural

MRI was 1.0 mm isotropic. The rs-fMRI was 2.4 mm isotropic with TR of

0.735s and 490 frames per run (6min). Each subject had one rs-fMRI run.

A number of behavioral measures were also collected by the UK Biobank.

More details can be found elsewhere (Elliott and Peakman, 2008; Sudlow

et al., 2015; Miller et al., 2016; Alfaro-Almagro et al., 2018).

2.2. Preprocessing and RSFC

We utilized ICA-FIX MSM-All grayordinate rs-fMRI data provided by

the HCP S1200 release (HCP S1200manual; Van Essen et al., 2012, 2013;

Glasser et al., 2013; Smith et al., 2013; Griffanti et al., 2014; Salimi--

Khorshidi et al., 2014). To eliminate residual motion and

respiratory-related artifacts (Burgess et al., 2016), we performed further

censoring and nuisance regression (Kong et al., 2019; Li et al., 2019)

Runs with more than 50% censored frames were discarded (Pruett et al.,

2015; Gordon et al., 2016; Smyser et al., 2016; Kong et al., 2019; Li et al.,

2019). Fig. S1 shows the distribution of the number of uncensored frames

across subjects.

Consistent with previous studies from our group (Kebets et al., 2019;

Li et al., 2019), we considered 400 cortical (Schaefer et al., 2018) and 19

sub-cortical (Fischl et al., 2002; Glasser et al., 2013) ROIs to ensure

whole-brain coverage. The preprocessed rs-fMRI time courses were

averaged across all grayordinate locations within each ROI. RSFC was

then computed using Pearson’s correlation of the averaged time courses

for each run of each subject (with the censored frames excluded for the

computation). The RSFC was averaged across all runs, resulting in one

419� 419 RSFC matrix for each subject.

In the case of the UK Biobank, we utilized the 55� 55 RSFC (Pear-

son’s correlation) matrices provided by the Biobank (Miller et al., 2016;

Alfaro-Almagro et al., 2018). The 55 ROIs were obtained from a

100-component whole-brain spatial-ICA (Beckmann and Smith, 2004), of

which 45 components were considered to be artifactual (Miller et al.,

2016).

2.3. FC-based prediction setup

We considered 58 behavioral measures across cognition, emotion and

personality from the HCP (Table S1; Kong et al., 2019). By restricting the

dataset to participants with at least one run (that survived censoring) and

all 58 behavioral measures, we were left with 953 subjects. 23, 67, 62

and 801 subjects had 1, 2, 3 and 4 runs respectively.

In the case of the UK Biobank, we considered four behavioral and

demographic measures: age, sex, fluid intelligence and pairs matching1

(number of incorrect matches). By restricting the dataset to participants

with 55� 55 RSFC matrices and all four measures, we were left with

8868 subjects.

For both datasets, kernel regression and three DNNs were applied to

1 The pairs matching task requires participants to memorize the positions of

matching pairs of cards.
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predict the behavioral and demographic measures of individual subjects

based on individuals’ RSFC matrices. More specifically, the RSFC data of

each participant was summarized as an N x N matrix, where N is the

number of brain ROIs. Each entry in the RSFC matrix represented the

strength of functional connectivity between two ROIs. The entries of the

RSFC matrix were then used as features to predict behavioral and de-

mographic measures in individual participants.

2.4. Kernel ridge regression

Kernel regression (Murphy, 2012) is a non-parametric classical ma-

chine learning algorithm. Let y be the behavioral measure (e.g., fluid

intelligence) and c be the RSFC matrix of a test subject. Let yi be the

behavioral measure (e.g., fluid intelligence) and ci be the RSFC matrix of

the i-th training subject. Roughly speaking, kernel regression will predict

the test subject’s behavioral measure to be the weighted average of the

behavioral measures of all training subjects: y �
P

i2training set

Similarityðci;

cÞyi, where Similarityðci; cÞ is the similarity between the RSFC matrices of

the test subject and i-th training subject. Here, we simply set

Similarityðci; cÞ to be the Pearson’s correlation between the lower trian-

gular entries of matrices ci and c, which is effectively a linear kernel. In

practice, an l2 regularization term is needed to avoid overfitting (i.e.,

kernel ridge regression). The level of l2 regularization is controlled by the

hyperparameter λ. More details are found in Appendix A1.

2.5. Fully-connected neural network (FNN)

Fully-connected neural networks (FNNs) belong to a generic class of

feedforward neural networks (Lecun et al., 2015) illustrated in Fig. 1. An

FNN takes in vector data as an input and outputs a vector. An FNN

consists of several fully connected layers. Each fully connected layer

consists of multiple nodes. Data enters the FNN via the input layer nodes.

Each node (except input layer nodes) is connected to all nodes in the

previous layer. The values at each node is the weighted sum of node

values from the previous layer. The weights are the trainable parameters

in FNN. The outputs of the hidden layer nodes typically go through a

nonlinear activation function, e.g., Rectified Linear Units (ReLU; f ðxÞ ¼

maxð0;xÞ), while the output layer tends to be linear. The value at each

output layer node typically represents a predicted quantity. Thus, FNNs

(and neural networks in general) allow the prediction of multiple

quantities simultaneously. In this work, the inputs to the FNN are the

vectorized RSFC (i.e., lower triangular entries of the RSFC matrices) and

the outputs are the behavioral or demographic variables we seek to

predict.

2.6. BrainNetCNN

One potential weakness of the FNN is that it does not exploit the

(mathematical and neurobiological) structure of the RSFC matrix, e.g.,

RSFC matrix is symmetric, positive definite and represents a network. On

the other hand, BrainNetCNN (Kawahara et al., 2017) is a specially

designed DNN for connectivity data, illustrated in Fig. 2. BrainNetCNN

allows the application of convolution to connectivity data, resulting in

significantly less trainable parameters than the FNN. This leads to less

parameters, which should theoretically improve the ease of training and

reduce overfitting issues. In this work, the input to the BrainNetCNN is

the N � N RSFC matrix and the outputs are the behavioral or de-

mographic variables we seek to predict.

The BrainNetCNN takes in any connectivity matrix directly as an

input and outputs behavioral or demographic predictions. Kawahara

et al. (2017) used this model for predicting age and neurodevelopmental

outcomes from structural connectivity data. BrainNetCNN consists of

four types of layers: Edge-to-Edge (E2E) layer, Edge-to-Node (E2N) layer,

Node-to-Graph (N2G) layer and a final fully connected (linear) layer. The

first three types of layers are specially designed layers introduced in the

BrainNetCNN. The final fully connected layer is the same as that used in

FNNs.

The Edge-to-Edge (E2E) layer is a convolution layer using cross-

shaped filters (Fig. 2). The cross-shaped filter is applied to each

element of the input matrix. Thus, for each filter, the E2E layer takes in a

N � N matrix and outputs a N � N matrix. The number of E2E layer is

arbitrary and is a tunable hyperparameter. The outputs of the final E2E

layer are inputs to the E2N layer. The E2N layer is similar to the E2E

layer, except that the cross-shaped filter is applied to only the diagonal

entries of the input matrix. Thus, for each filter, the E2N layer takes in a

N � N matrix and outputs a N � 1 vector. There is one E2N layer for

BrainNetCNN. The outputs of the E2N layer are the inputs to the Node-to-

Graph (N2G) layer. The N2G layer is simply a fully connected hidden

layer similar to the a FNN’s hidden layer. Finally, the outputs of the N2G

layer are linearly summed by the final fully connected layer to provide a

final set of prediction values.

2.7. Graph convolutional neural network (GCNN)

Standard convolution applies to data that lies on a Euclidean grid

(e.g., images). Graph convolution exploits the graph Laplacian in order to

generalize the concept of standard convolution to data lying on nodes

connected together into a graph. This allows the extension of the stan-

dard CNN to graph convolutional neural networks (GCNNs; Defferrard

et al., 2016; Bronstein et al., 2017; Kipf and Welling, 2017). There are

many different ways that GCNN can be applied to neuroimaging data

(Kipf and Welling, 2017; Ktena et al., 2018; Zhang et al., 2018). Here we

considered the innovative GCNN developed by Kipf and Welling (2017)

and extended to neuroimaging data by Parisot and colleagues (Parisot

et al., 2017, 2018). Fig. 3 illustrates this approach.

The input to an FNN (Fig. 1) or a BrainNetCNN (Fig. 2) is the RSFC

data of a single subject. By contrast, the GCNN takes in data (e.g., vec-

torized RSFC) of all subjects as input and outputs behavioral (or de-

mographic) predictions of all subjects (Parisot et al., 2017, 2018). In

other words, data from the training, validation, and testing sets are all

input into the GCNN at the same time. To avoid leakage of information

across training, validation and test sets, masking of data is applied during

Fig. 1. Schematic of a feedforward neural

network (FNN). An FNN takes in vectorized RSFC

matrix entries as inputs and outputs behavioral or

demographic predictions. An FNN consists of an

input layer, several hidden layers (three layers are

shown here) and an output layer. The number of

nodes in the input layer is equal to the number of

elements in the lower triangular portion of the RSFC

matrix. The number of nodes in the output layer is

typically equal to the number of behavioral measures

we are predicting. The number of hidden layers and

number of nodes in the hidden layers are among the

many hyperparameters that have to be tuned.
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the calculation of the loss function and gradient descent.

More importantly, the graph in GCNN does not represent connectivity

matrices (like in BrainNetCNN). Instead, each node represents a subject

and edges are determined by the similarity between subjects. This sim-

ilarity is problem dependent. For example, in the case of autism spectrum

disorder (ASD) classification, similarity between two subjects is defined

based on sex, sites and RSFC, i.e., two subjects are more similar if they

have the same sex, from the same site and have similar RSFC patterns

(Parisot et al., 2017, 2018). The use of sex and sites in the graph defi-

nition were particularly important for this specific application, since ASD

is characterized by strong sex-specific effects and the database included

data from multiple unharmonized sites (Di Martino et al., 2014).

Similar to the original studies (Parisot et al., 2017, 2018), we utilized

vectorized RSFC (lower triangular entries of the RSFC matrix) of all

subjects as inputs to the GCNN. Edges between subjects were defined

based on Pearson’s correlation between lower triangular portions of

RSFC matrices.

2.8. HCP training, validation and testing

For the HCP dataset, 20-fold cross-validation was performed. The 953

subjects were divided into 20 folds, such that family members were not

split across folds. Inner-loop cross-validation was performed for hyper-

parameter tuning. More specifically, for a given test fold, cross-validation

was performed on the remaining 19 folds with different hyper-

parameters. The best hyperparameters were then used to train on the 19

folds. The trained model was then applied to the test fold. This was

repeated for all 20 test folds.

In the case of kernel regression, there was only one single hyper-

parameter λ (that controls the l2 regularization; see Appendix A1). A

separate hyperparameter was tuned for each fold and each behavioral

measure separately based on a grid search over the hyperparameter.

In the case of the DNNs, there was a large number of hyper-

parameters, e.g., number of layers, number of nodes, number of training

epochs, dropout rate, optimizer (e.g., stochastic gradient or ADAM),

weight initialization, activation functions, regularization, etc. GCNN also

has additional hyperparameters tuned, e.g., definition of the graph and

graph Laplacian estimation. Therefore, instead of training a separate

DNN for each behavioral measure, a single FNN (or BrainNetCNN or

GCNN) was trained for all 58 behavioral measures. The reason is that

tuning hyperparameters separately for each behavioral measure would

be too time consuming. We note that the joint prediction of multiple

behavioral measures might not be a disadvantage for the DNNs and

might even potentially improve prediction performance because of

shared structure among target behavioral variables (Rahim et al., 2017).

Furthermore, we tried to tune each DNN (FNN, BrainNetCNN or GCNN)

for only fluid intelligence, but the performance for fluid intelligence

prediction was not better than predicting all 58 behavioral measures

simultaneously.

Furthermore, a proper inner-loop 20-fold cross-validation would

involve tuning the hyperparameters for each DNN 20 times (once for

each split of the data into training-test folds), which was computationally

prohibitive. Thus, for each DNN (FNN, BrainNetCNN and GCNN), we

tuned the hyperparameters once, using the first split of the data into

training-test folds, and simply re-used the optimal hyperparameters for

the remaining training-test splits of the data. Such a procedure biases the

prediction performance in favor of the DNNs (relative to kernel regres-

sion), so the results should be interpreted accordingly (see Discussion).

Such a bias is avoided in the UK Biobank dataset (see below). Further

details about DNN hyperparameters are found in Appendix A2.

As is common in the FC-based prediction literature (Finn et al., 2015),

model performance was evaluated based on the Pearson’s correlation

Fig. 2. Schematic of the BrainNetCNN (Kawahara

et al., 2017). The BrainNetCNN takes in the RSFC

matrix as an input and outputs behavioral or de-

mographic predictions. BrainNetCNN consists of four

types of layers, Edge-to-Edge (E2E) layer,

Edge-to-Node (E2N) layer, Node-to-Graph (N2G)

layer, and a final fully connected (Linear) layer. The

number of the E2E layers can be any number greater

than or equal to zero. On the other hand, there is one

E2N layer and one N2G layer. The number of

convolution filters and number of nodes in these

layers are among the many hyperparameters that

have to be tuned.

Fig. 3. Schematic of a graph convolution neural network (GCNN; Parisot et al., 2017, 2018). This particular GCNN takes in vectorized RSFC matrices of all

subjects as input and outputs behavioral (or demographic) prediction of all subjects. (A) Vectorized FC of all subjects (subject 1 to subject n). (B) The input of GCNN is

a graph, where each node represents a subject and is associated with the vectorized FC from the corresponding subject in (A). An edge in the graph represents the

similarity between two subjects. Here, the similarity is defined in terms of the similarity of the subjects’ RSFC matrices. (C) Output of the first graph convolutional

layer. Graph convolutional layer extends standard convolution to graph convolution. Each node is associated with a vector, whose length is determined by the number

of filters in the first graph convolutional layer. (D) Final output of GCNN after one or more graph convolutional layers. Each node contains the predicted behav-

ioral measure(s).
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between predicted and actual behavioral measures across subjects within

each test fold. Furthermore, since certain behavioral measures were

correlated with motion (Siegel et al., 2017), age, sex, and motion (FD)

were regressed from the behavioral measures from the training and test

folds (Kong et al., 2019; Li et al., 2019). Regression coefficients were

estimated from the training folds and applied to the test folds. Mean

absolute error (MAE) and coefficient of determination (COD) will also be

reported.

2.9. UK biobank training, validation and testing

The large UK Biobank dataset allowed us the luxury of splitting the

8868 subjects into training (N¼ 6868), validation (N¼ 1000) and test

(N¼ 1000) sets, instead of employing an inner-loop cross-validation

procedure like in the HCP dataset. Care was taken so that the distribu-

tions of various attributes (sex, age, fluid intelligence and pairs matching)

were similar across training, validation and test sets.

Hyperparameters were tuned using the training and validation sets.

The test set was only utilized to evaluate the final prediction perfor-

mance. A separate DNN was trained for each of the four behavioral and

demographic measures. Thus, the hyperparameters were tuned inde-

pendently for each behavioral/demographic measure. Further details

about DNN hyperparameters are found in Appendix A2. Initial experi-

ments using a single neural network to predict all four measures simul-

taneously (like in the HCP dataset) did not appear to improve

performance and so was not further pursued. In the case of kernel

regression, the hyperparameter λ was tuned using the validation set

based on a grid search over the hyperparameter.

Like before, prediction accuracies for age, fluid intelligence and pairs

matching were evaluated based on the Pearson’s correlation between

predicted and actual measures across subjects within the test set. Since

the age prediction literature often used mean absolute error (MAE) as an

evaluation metric (Liem et al., 2017; Cole et al., 2018; Varikuti et al.,

2018), we included MAE as an evaluation metric. For completeness, we

also computed MAE for pairs matching and fluid intelligence.

In the case of sex, accuracy was defined as the fraction of participants

whose sex was correctly predicted. Like before, we regressed age, sex and

motion from fluid intelligence and pairs matching measures in the

training set and apply the regression coefficients to the validation and

test sets. When predicting age and sex, no regression was performed.

Coefficient of determination (COD) for age, pairs matching and fluid

intelligence will also be reported in the Supplemental Material.

2.10. Deep neural network implementation

The DNNs were implemented using Keras (Chollet, 2015) or PyTorch

(Paszke et al., 2017) and run on NVIDIA Titan Xp GPU using CUDA. Our

implementation of BrainNetCNN and GCNN were based on GitHub code

from the original papers (Kawahara et al., 2017; Kipf andWelling, 2017).

Our implementations achieved similar results as the original imple-

mentations when using the toy datasets and hyperparameters provided

by the original GitHub implementations. More details about hyper-

parameter tuning can be found in Appendix A2.

2.11. Statistical tests

For the HCP dataset, we performed 20-fold cross-validation, yielding

a prediction accuracy for each test fold. To compare two algorithms, the

corrected resampled t-test was performed (Nadeau and Bengio, 2003;

Bouckaert and Frank, 2004). The corrected resampled t-test corrects for

the fact that the accuracies across test folds were not independent.

In the case of the UK Biobank, there was only a single test fold, so the

corrected resampled t-test could not be applied. Instead, when comparing

correlations from two algorithms, the Steiger’s Z-test was utilized

(Steiger, 1980). When comparing MAE, a two-tailed paired sample t-test

was performed. When comparing prediction accuracies for sex, the

McNemar’s test was utilized (McNemar, 1947).

2.12. Scaling of prediction performance as a function of sample size

The large UK Biobank dataset allowed us to explore the effect of

sample size on predicting fluid intelligence. The test set (N¼ 1000) was

the same as before to allow for meaningful comparisons. We considered

100, 500, 1000, 2000, 3000, 4000, 5000 and 6000 and 7868 subjects for

training and validation. The case of 7868 subjects was identical to the

analysis from the previous sections.

In the case of 3000, 4000, 5000 and 6000 subjects, the validation set

comprised the same set of 1000 subjects as in the previous sections. The

training set was obtained by randomly sampling the appropriate number

of subjects from the original training set of 6868 participants. For

example, in the case of 3000 training and validation subjects, we

randomly sampled 2000 training subjects from the original training set.

However, the training subjects were selected so that the distribution of

fluid intelligence matched the distributions of the validation and test sets.

In the case of 100, 500, 1000 and 2000 subjects, we split the partic-

ipants with a 3:1 ratio. For example, in the case of 100 subjects, there

were 75 training and 25 validation subjects. Like before, the participants

were randomly selected but we ensured the distributions of fluid intel-

ligence in the training and validation sets were similar to the distribution

of the test set.

The hyperparameter tuning for the three DNNs and kernel regression

was the same as in previous sections. See Appendices A1 and A2 for more

details.

2.13. Control analysis

We repeated our analyses using hyperparameters as close as possible

to the original BrainNetCNN hyperparameters (provided by the Brain-

NetCNN code repository; Kawahara et al., 2017) and original GCNN

hyperparameters (provided by the GCNN code repository; Parisot et al.,

2017, 2018). In the case of FNN, we utilized hyperparameters as close as

possible to the FC90net baseline in the BrainNetCNN paper (Kawahara

et al., 2017).

2.14. Data and code availability

This study utilized publicly available data from the HCP (htt

ps://www.humanconnectome.org/) and UK Biobank (https://www

.ukbiobank.ac.uk/). The 400 cortical ROIs (Schaefer et al., 2018) can

be found here (https://github.com/ThomasYeoLab/CBIG/tree/master/

stable_projects/brain_parcellation/Schaefer2018_LocalGlobal). The

kernel regression and DNNs code utilized in this study can be found here

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_proje

cts/predict_phenotypes/He2019_KRDNN). The trainedmodels for the UK

Biobank dataset can also be found in the above GitHub link. The code was

reviewed by one of the co-authors (MN) before merging into the GitHub

repository to reduce the chance of coding errors.

3. Results

3.1. HCP behavioral prediction

Fig. 4 shows the prediction accuracy (Pearson’s correlation coeffi-

cient) averaged across 58 HCP behavioral measures and 20 test folds.

Statistical tests were performed between kernel regression and the three

DNNs (see Methods). False discovery rate (q< 0.05) was applied to

correct for multiple comparisons correction.

FNN achieved the highest average prediction accuracy with Pearson’s

correlation r¼ 0.121� 0.063 (mean� std). On the other hand, kernel

regression achieved an average prediction accuracy of r¼ 0.115� 0.036

(mean� std). However, there was no statistical difference between FNN

and kernel regression (p¼ 0.60). Interestingly, BrainNetCNN
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(r¼ 0.114� 0.048) and GCNN (r¼ 0.072� 0.044) did not outperform

FNN, even though the two DNNs were designed for neuroimaging data.

KRR was significantly better than GCNN (p¼ 3e-4), but not Brain-

NetCNN (p¼ 0.93).

For completeness, Fig. 5, Figure S2, and S3 show the behavioral

prediction accuracies for all 58 behavioral measures. Figs. S4–S7 show

the scatterplots of predicted versus actual values for 13 cognitive mea-

sures. Kernel regression was significantly better than FNN for predicting

grip strength (p¼ 2.65e-4) and significantly better than GCNN for pre-

dicting picture matching vocabulary (p¼ 6.91e-5). No other difference

survived the FDR correction.

Similar conclusions were obtained when using mean absolute error

(Fig. 6) and coefficient of determination (Fig. S8) as measures of pre-

diction performance.

3.2. UK biobank behavioral and demographics prediction

Table 1 and Fig. 7 show the prediction performance of sex, age, pairs

matching and fluid intelligence. Fig. S9 shows the scatterplots of pre-

dicted versus actual values for age, pairs matching and fluid intelligence.

Kernel regression, FNN, and GCNN achieved the highest accuracy for sex

prediction. Kernel regression performed the best for fluid intelligence

and age (measured using Pearson’s correlation). BrainNetCNN per-

formed the best for age (measured using MAE) and pairs matching.

Statistical tests were performed between kernel regression and the

three DNNs (see Methods). False discovery rate (q< 0.05) was applied to

correct for multiple comparisons correction. There was no statistical

difference between kernel regression and the DNNs for all behavioral and

demographic measures.

Interestingly, the GCNN achieved poor performance in the case of

pairs matching (Pearson’s correlation r¼ 0.008), although it was not

statistically worse than kernel regression. Upon further investigation, we

found that GCNN achieved an accuracy of r¼ 0.106 in the UK Biobank

validation set. When using the initial set of hyperparameters (before

hyperparameter tuning using HORD), GCNN achieved accuracies of

r¼ 0.047 and r¼ 0.056 in the validation and test sets respectively.

Overall, this suggests that the hyperparameter tuning overfitted the

validation set, despite the rather large sample size.

Similar conclusions were obtained when using mean absolute error

(MAE) as a performance measure for fluid intelligence and pairs

matching (Table 2 and Fig. S10), or when using coefficient of determi-

nation (COD) as a performance measure for age, pairs matching and fluid

intelligence (Table S2).

3.3. Effect of sample size on predicting fluid intelligence in the UK biobank

Fig. 8 shows the prediction performance (Pearson’s correlation) of

fluid intelligence in the UK Biobank as the training and validation sample

sizes were varied, while the same test set of 1000 subjects was used

throughout. All algorithms performed poorly with 100 subjects but

improved with more subjects. There was more than 300% improvement

when increasing the sample size from 100 to 1000 subjects and more

than 35% improvement when increasing the sample size from 1000 to

5000 subjects. However, the improvement tapered off from 5000 to 7868

subjects. GCNN was highly volatile as the sample size was varied, sug-

gesting its sensitivity to particular choices of training and validation

subjects. Kernel regression was competitive across all sample sizes.

Similar conclusions were obtained when MAE was used as a performance

metric (Fig. S11).

3.4. Control analysis

Tables S3 and S4 show the performance of the DNNs using hyper-

parameters from the original publications (Kawahara et al., 2017; Parisot

et al., 2017, 2018) versus our tuned hyperparameters. The performance

of our hyperparameters compared favorably to the performance of the

original hyperparameters. This is not surprising, since our hyper-

parameters were obtained by tuning using the datasets shown in this

paper.

3.5. Computational costs

Kernel regression has a close-form solution (Appendix A1) and only

one hyperparameter, so the computational cost is extremely low. For

example, kernel regression training and grid search of 32 hyper-

parameter values in the UK Biobank validation set took about 20min

(single CPU core) for one behavioral measure. This is one reason why we

considered kernel regression instead of other slower classical approaches

(e.g., support vector regression or elastic net) requiring iterative opti-

mization. On the other hand, FNN training and tuning of hyper-

parameters in the UK Biobank validation set took around 80 h (single

GPU) for one behavioral measure, excluding the manhours necessary for

the manual tuning.

4. Discussion

In this study, we showed that kernel regression and DNNs achieved

similar performance in RSFC-based prediction of a wide range of

behavioral and demographic measures across two large-scale datasets

totaling almost 10,000 participants. Furthermore, FNN performed as well

as the two DNNs that were specifically designed for connectome data.

Given comparable performance between kernel regression and the DNNs

and the significantly greater computational costs associated with DNNs,

our results suggest that kernel regression might be more suitable than

DNNs in some neuroimaging applications.

Fig. 4. Prediction accuracy (Pearson’s correlation coefficient) averaged

across 58 HCP behavioral measures and 20 test folds. Correlation was

computed for each test fold and each behavior, and then averaged across the 58

behaviors. Bars show mean across test folds. Error bars show standard error of

model performance across cross-validation folds. Kernel regression and FNN

performed the best. There was no statistical difference between kernel regres-

sion and FNN or BrainNetCNN. Kernel regression was statistically better than

GCNN (p¼ 3e-4).
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4.1. Potential reasons why DNNs did not outperform kernel regression for

RSFC-based prediction

There are a few potential reasons why DNNs did not outperform

kernel regression in our experiments on RSFC-based behavioral predic-

tion. First, while the human brain is nonlinear and hierarchically orga-

nized (Deco et al., 2011; Breakspear, 2017; Wang et al., 2019), such a

structure might not be reflected in the RSFC matrix in a way that was

exploitable by the DNNs we considered. This could be due to the mea-

surements themselves (Pearson’s correlations of rs-fMRI timeseries), the

particular representation (N x N connectivity matrices) or particular

choices of DNNs, although we again note that BrainNetCNN and GCNN

were specifically developed for connectome data.

Second, given the much larger datasets used in computer vision and

natural language processing (Chelba et al., 2014; Russakovsky et al.,

2015), it is possible that there was not enough neuroimaging data (even

in the UK Biobank) to fully exploit DNNs. However, our experiments

show that kernel regression was highly competitive across all sample

sizes from 100 to 7898 subjects. In fact, all approaches (except GCNN)

improved at almost lockstep with greater sample size, suggesting that

even larger sample sizes might equally benefit both DNNs and kernel

regression.

Third, it is well-known that hyper-parameter settings and architec-

tural details can impact the performance of DNNs. Thus, it is possible that

the benchmark DNNs we implemented in this work can be further opti-

mized. However, we do not believe this would alter our conclusions for

two reasons. First, for some measures (e.g., sex classification in the UK

Biobank), we were achieving performance at or near the state-of-the-art.

Second, an earlier version of this paper relied completely on manual

tuning of hyperparameters. In the current version of this paper, we uti-

lized an automatic algorithm to tune a subset of hyperparameters for the

UK Biobank experiments (Appendix A2), yielding essentially the same

conclusions.

It is also worth pointing out that while deep learning has won several

predictive modeling challenges, these have mostly involved image seg-

mentation (Choi et al., 2016; Kamnitsas et al., 2017a, Hongwei Li et al.,

2018a). The success of DNNs has been less clear in other neuroimaging

challenges. For example, in the 2019 ABCD challenge to predict fluid

intelligence from structural MRI, kernel regression was the winner,

beating other deep learning algorithms (Mihalik et al., 2019). Similarly,

in the recent TADPOLE challenge to predict Alzheimer’s Disease pro-

gression (Marinescu et al., 2018), the top entry did not utilize deep

learning (https://tadpole.grand-challenge.org/Results/).

4.2. Hyperparameters

There are significantly more hyperparameters in DNNs compared

with classical machine learning approaches. For example, for a fixed

kernel (e.g., correlation metric in our study), kernel regression has one

single regularization parameter. Even with a nonlinear kernel (e.g. radial

basis function), there would only be two hyperparameters. This is in

contrast to DNNs, where there are easily more than ten hyperparameters.

Because of the large number of hyperparameters, most applications

involving DNNs currently require some level of manual hyperparameter

tuning. Therefore, we suggest that manual hyper-parameter tuning

should be performed within a training-validation-test framework (like in

our UK Biobank experiments), rather than a nested (inner-loop) cross-

validation framework (like in HCP experiments). The reason is that

Fig. 5. Prediction accuracies (Pearson’s correlation coefficient) in a curated set of 13 HCP cognitive measures averaged across 20 test folds. Correlation was

computed for each test fold and each behavior. Bars show mean across test folds. Error bars show standard errors of model performance across cross-validation folds.

Prediction accuracies of the remaining 45 behavioral measures are found in Figs. S2 and S3.
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within a nested (inner-loop) cross-validation framework, information

from tuning one fold might leak to another fold (via the person tuning the

hyperparameters).

To elaborate, recall that we divided the HCP dataset into 20 folds. We

tuned the hyperparameters of the DNNs using folds 2 to 20 and applied

the trained DNNs to fold 1. Since fold 1 was not used in tuning the

hyperparameters, the performance of the DNNs in fold 1 was unbiased.

However, when fold 2 became the test fold, we utilized the same

hyperparameters to train using folds 1, 3 to 20. This is problematic

because fold 2 was originally utilized to tune the hyperparameters, so

consequently the performance of the DNNs in test fold 2 was inflated.

One could try to independently tune the hyperparameters for each

fold independently. However, complete independence between folds is

unlikely because the person performing the manual tuning cannot

possibly forget his/her tuning experience with the other folds. As such,

this will yield overly optimistic results.

On the other hand, the test set in the UK Biobank was only utilized

after the hyperparameters have been determined from the training and

validation sets. Therefore, the performance of the DNNs was unbiased. It

is worth noting that our motivation for advocating the training-

validation-test framework is to prevent overly optimistic results in the

test set, but does not necessarily eliminate overfitting. For example, in the

case of pairs matching in the UK Biobank, our tuning procedure over-

fitted on the validation set, yielding poor performance in the test set

(Table 1). Thus, overfitting was “caught” in the test set, which highlights

the benefits of adopting a training-validation-test framework.

Finally, we note that there are generally too many DNN hyper-

parameters (and design choices) to be listed in a paper. In fact, there were

hyperparameters too complex to completely specify in this paper. How-

ever, we have made our code publicly available, so researchers can refer

to the code for the exact hyperparameters. We encourage future neuro-

imaging DNN studies to also make their code publicly available.

4.3. Prediction performance in the literature

Comparing our prediction performance with the literature is difficult

because of different datasets, sample sizes, cross-validation procedures

and de-confounding strategies. For example, we regressed age, sex, and

motion (FD) from the behavioral measures, but other studies might not

perform any regression or use a different set of regressors. Nevertheless,

we believe that our prediction performance is generally consistent with

the literature.

As mentioned earlier, our sex prediction accuracy of 91.6% in the UK

Biobank is among the best in the literature. For example, Ktena et al.

(2018) reported a sex prediction accuracy of around 80% when using

55� 55 functional connectivity matrices from 2500 UK Biobank subjects.

On the other hand, Chekroud et al. (2016) reported sex prediction ac-

curacy of 93% when using cortical thickness and subcortical volumes of

1566 subjects from the Brain Genomics Superstruct Project (Holmes

et al., 2015).

In the case of fluid intelligence, our prediction accuracies (Pearson’s

correlation) ranged from around 0.257 to 0.297 (excluding GCNN which

performed poorly) in the HCP dataset. Although earlier RSFC-based

behavioral prediction studies have reported high fluid intelligence pre-

diction accuracy in the HCP dataset (Finn et al., 2015), newer studies

using more subjects reported lower accuracies comparable with our re-

sults. For example, Dubois et al. (2018) reported a prediction accuracy

(Pearson’s correlation) of 0.27 for fluid intelligence in the HCP dataset.

On the other hand, Greene et al. (2018) reported a prediction accuracy

(Pearson’s correlation) of 0.17 for fluid intelligence in the HCP dataset

(but only using data from a single resting-fMRI session). Thus, our pre-

diction accuracies for fluid intelligence is consistent with the literature.

In the case of age prediction, we achieved a prediction accuracy

(Pearson’s correlation) of 0.6 and an MAE of 4.8 in the UK Biobank

dataset. Comparing these results with the literature is difficult because of

sensitivity to age range in the dataset. For example, many studies utilized

either lifespan (Cole et al., 2017; Liem et al., 2017) or developmental

(Sturmfels et al., 2018; Nielsen et al., 2019) cohorts, while the UK Bio-

bank comprised older adults (more than 45 years old). Furthermore,

many studies preferred to use structural MRI, instead of RSFC, for pre-

dicting age (Cole et al., 2017; Sturmfels et al., 2018; Varikuti et al.,

2018). Liem et al. (2017) achieved MAEs ranging from 5.25 to 5.99 when

using RSFC for predicting age in a lifespan dataset comprising 2354

subjects, which was worse than our MAE. On the other hand, their pre-

diction accuracies (Pearson’s correlation) ranged from 0.79 to 0.93,

which was better than our prediction accuracy (Pearson’s correlation).

Overall, this suggests that our prediction performance is probably com-

parable with other RSFC studies, although we emphasize that comparing

age prediction performance across datasets is non-trivial.

It is important to mention that prediction performance was poor for a

number of target variables across all four prediction algorithms. For

Fig. 6. Prediction MAE averaged across 58 HCP behavioral measures and

20 test folds. Lower is better. MAE was computed for each test fold and each

behavior and then averaged across the 58 behaviors. Bars show the mean across

test folds. Error bars show standard error of model performance across cross-

validation folds. There was no statistical difference between kernel regression

and all DNNs after correcting for multiple comparisons.

Table 1

Prediction performance of four behavioral and demographic measures in

the UK Biobank. For age (MAE), lower values imply better performance. For all

the other measures, larger values imply better performance. Bold indicates the

best performance, although it does not imply statistical significance. There was

no statistical difference between kernel regression and the DNNs for all behav-

ioral and demographic measures after correcting for multiple comparisons

(q< 0.05). MAE refers to mean absolute error. Correlation refers to Pearson’s

correlation. We note that simply predicting the median age in the training set

would have yielded an MAE of 6.194.

Model Sex Age Pairs

matching

Fluid

intelligence

Accuracy Correlation MAE Correlation Correlation

Kernel

Regression

0.916 0.599 4.826 0.061 0.239

FNN 0.916 0.599 4.899 0.045 0.239

BrainNetCNN 0.914 0.598 4.824 0.067 0.235

GCNN 0.916 0.593 4.895 0.008 0.232
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example, in the case of pairs matching in the UK Biobank dataset, pre-

dicting the median of the training set yielded lower MAE than all four

models, suggesting that pairs matching is not an easily predictable trait

using RSFC. Therefore, it might not be meaningful to compare the models

for pairs matching. On the other hand, we note that for both age and fluid

intelligence prediction, all four models performed better than predicting

the median of the training set. Similarly, sex prediction was a lot better

than chance, given that there were roughly equal number of males and

females in the dataset. For these three target variables (age, sex and fluid

intelligence), all four models exhibited very similar performance.

It is also worth noting that the poor average COD in the HCP dataset is

consistent with the literature. For example, of the 58 behavioral mea-

sures, 48 of them were also utilized in the HCP MegaTrawl (https://db.h

umanconnectome.org/megatrawl/). For the 300-dimensional group-ICA

results, HCP MegaTrawl achieved an average COD of �0.177 (original

data space), while kernel regression in the current study achieved an

average COD of �0.0875. Overall, this suggests that certain target vari-

ables are not easily predicted using RSFC.

4.4. Limitations and caveats

Although the current study suggests that kernel regression and DNNs

achieved similar performance for RSFC-based behavioral prediction, it is

possible that other DNNs (we have not considered) might outperform

kernel regression. Furthermore, our study focused on the use of N x N

static RSFC matrices for behavioral prediction. Other RSFC features, such

as dynamic RSFC features (Calhoun et al., 2014; Preti et al., 2017;

Li�egeois et al., 2019), in combination with DNNs might potentially yield

Fig. 7. Prediction performance of four behavioral and demographic measures in the UK Biobank. For age (MAE), lower values imply better performance. For all

the other measures, larger values imply better performance. The horizontal lines represent statistical tests between kernel regression and the DNNs. “n.s” stands for not

significant after FDR (q< 0.05) correction.

Table 2

Prediction MAE of pairs matching and fluid intelligence in the UK Biobank.

Lower values imply better performance. Bold indicates the best performance. We

note that simply predicting the median of the pairs matching value in the training

set would have yielded anMAE of 0.400, which was better than kernel regression

and all DNNs.

Model Pairs matching Fluid intelligence

Kernel regression 0.551 1.608

FNN 0.567 1.613

BrainNetCNN 0.553 1.610

GCNN 0.497 1.612

Median 0.400 1.656
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better performance (Hongming Li et al., 2018b; Khosla et al., 2019).

We also note that our evaluation procedure was performed on the

HCP and UK Biobank datasets independently. Therefore, we expect the

reported prediction performance to be maintained if new participants

were recruited in the respective studies under the same experimental

conditions (e.g., no scanner upgrade, same population, same acquisition

protocol and preprocessing, etc). However, the reported prediction per-

formance would likely drop if the trained models (from the UK Biobank

or HCP) were applied to other datasets (Arbabshirani et al., 2017; Woo

et al., 2017). At this point, it is unclear which approach (kernel

regression, FNN, BrainNetCNN or GCNN) would generalize better to a

completely new dataset. This is obviously an active area of research given

the increasing number of large-scale publicly available brain imaging

datasets.

5. Conclusion

By using a combined sample of nearly 10,000 participants, we

showed that kernel regression and three types of DNN architectures

achieved similar performance for RSFC-based prediction of a wide range

of behavioral and demographic measures. Overall, our study suggests

that kernel regression might be just as effective as DNNs for certain

neuroimaging applications, while incurring significantly less computa-

tional costs.
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Appendix

A1. Kernel Regression

In this section, we describe kernel regression in detail (Liu et al., 2007; Murphy, 2012). The kernel matrix K encodes the similarity between pairs of

subjects. Motivated by Finn et al. (2015), the i-th row and j-th column of the kernel matrix is defined as the Pearson’s correlation between the i-th

subject’s vectorized RSFC and j-th subject’s vectorized RSFC (considering only the lower triangular portions of the RSFC matrices). The behavioral

measure yi of subject i can be written as:

yi ¼
XM

j¼1
αjK

�

ci; cj
�

þ ei (1)

where ci is the vectorized RSFC of the i-th subject, Kðci; cjÞ is the element at i-th row and j-th column of kernel matrix,M is the total number of training

subjects, ei is the noise term and αj is the trainable weight. The goal of kernel regression is to find an optimal set of α. To achieve this goal, we maximize

the penalized likelihood function:

J ¼ �
1

2

XM

i¼1

n

yi �
XM

j¼1
αjK

�

ci; cj
�

o2

(2)

with respect to α ¼ ½α1; α2;…; αM �
T . To avoid overfitting, a l2 regularization (i.e., kernel ridge regression) can be added, so the resulting optimization

Fig. 8. Prediction performance (Pearson’s correlation coefficient) of fluid

intelligence in the UK Biobank dataset with different number of training

and validation subjects. The performance of all algorithms generally increased

with more training and validation subjects. In the case of 100, 500, 1000 and

2000 subjects, 3/4 of the subjects were used for training and 1/4 of the subjects

were used for validation. In the remaining cases, 1000 subjects were used for

validation, while the remaining subjects were used for training. For all cases,

test set comprised the same set of 1000 subjects. Kernel regression was highly

competitive across all sample sizes. See Fig. S11 for MAE results.
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problem becomes:

α ¼ argmin
α

1

2
ðy�KαÞT ðy�KαÞ þ

λ

2
α
TKα (3)

where K is the M �M kernel matrix, y ¼ ½y1; y2;…; yM �
T and λ is a hyperparameter that controls the l2 regularization. By solving equation (3) with

respect to α, we can predict a test subject’s behavioral measure ys as:

ys ¼ Ksα ¼ KsðKþ λIÞ�1
y (4)

where Ks ¼ ½Kðcs; c1Þ; Kðcs; c2Þ;…; Kðcs; cMÞ�.

In the case of the HCP, λ was selected via inner-loop cross-validation. In the case of the UK biobank, λ was tuned on the validation set. For sex

prediction in the UK Biobank, for each continuous prediction ysex, the participant was classified as male or female based on whether it was larger or

smaller than the threshold. We tuned the threshold to obtain the best accuracy in the UK Biobank validation dataset and used this threshold in the test

set.

A2. More details of deep neural networks

In this section, we describe further details of our DNN implementation.

� For GCNN, we adopted Keras code from the GCNN GitHub repository (https://github.com/tkipf/keras-gcn; Kipf and Welling, 2017). We made some

minor modifications to the code, e.g., the modified code directly loaded the graph adjacency matrix, instead of loading the edges and generating the

adjacency matrix. As another example, our graph convolution layer loaded the graph matrix as parameters rather than as an input. However, we

emphasized that the core functionalities (e.g., graph convolution) remained unchanged. As a sanity check, we applied our modified code to the

original toy data using the original hyperparameters provided by the original GitHub repository. Our results were comparable to the original

implementation (Table S5).

� The original BrainNetCNN implementation used the Caffe framework (https://github.com/jeremykawahara/ann4brains; Kawahara et al., 2017).

We re-implemented BrainNetCNN in Keras and PyTorch following the original Caffe code as closely as possible. The Keras version was applied to the

HCP data, while the PyTorch version was applied to the UK Biobank data. The reason for this inconsistency was that after our experiments with the

HCP dataset using Keras, we realized that the Keras framework yielded slightly different results each time the code was run. This was apparently a

well-known issue of the framework. As such, we decided to implement a second version in PyTorch, which was then applied to the UK Biobank. As a

sanity check, we applied both implementations (Keras and PyTorch) to the original toy data using the original hyperparameters provided by the

original GitHub repository. Our implementations achieved comparable results with the original implementation (Table S6).

� In the case of the FNN, since this is just a generic feedforward neural network, so we implemented using default libraries in Keras and PyTorch. The

Keras version was applied to the HCP data, while the PyTorch version was applied to the UK Biobank data. The reason for this inconsistency is the

same as the previous bullet point.

� Representative learning curves for the HCP dataset are shown in Fig. S12. Learning curves for the UK Biobank are shown in Figs. S13–S15. The

training curves showed good accuracy/error, suggesting that we are not underfitting to the data. The validation curves were plateauing, suggesting

that we were not stopping too early in our training. Since the validation and test curves were progressing in almost lockstep (except for certain

instances of GCNN), our stopping criterion (based on the peaks of the validation curves) was reasonable. For most behavioral measures, there were

relatively big gaps between the training and validation/test curves, suggesting overfitting. However, we have already deployed several standard

strategies to reduce overfitting, including dropout, L2-regularization/weight-decay and batch-normalization.

In the case of the HCP dataset:

� For all three DNNs, all behavioral measures were z-normalized based on training data. The loss function was mean squared error (MSE). Optimizer

was stochastic gradient descent (SGD). With the MSE loss, the output layer has 58 nodes (FNN and BrainNetCNN) or filters (GCNN).

� In the case of the main results (Figs. 4, 5, S2 and S3), the hyperparameters were tuned manually by trial-and-error. Since each test fold was of size 47

or 48, we simply set 48 to be the batch size (except GCNN, which utilized the whole dataset in a single mini-batch). We initialized with a default set

of hyperparameters (e.g., learning rate¼ 0.01, dropout rate¼ 0.5, number of filter/nodes¼ 32) and then tuned the optimizer (learning rate, mo-

mentum, and learning rate decay), layer structure (number of layers, number of nodes/filters), dropout rate, regularization and weight initialization.

There was no fixed order for hyperparameter tuning. We generally started by tuning the layer structure, followed by the optimizer and then other

hyperparameters. For GCNN, we also tuned the graph-related hyperparameters at the beginning of the tuning process.

� Final FNN structure is shown in Table 3. Dropout of 0.6 was added before each fully-connected layer. L2 regularization of 0.02 was added for layer 2.

� Final BrainNetCNN structure is shown in Table 4. Dropout of 0.4 was added after E2N layer. LeakyReLU (Maas et al., 2013) with alpha of 0.3 was

used as the activation function for the first three layers.

� Final GCNN structure is shown in Table 5. Dropout of 0.3 was added for each layer. L2 regularization of 8e-4 was added for layer 1. The nodes of the

graph corresponded to subjects. Edges were constructed based on Pearson’s correlation between subjects’ vectorized RSFC. The graph was

thresholded by only retaining edges with top 5% correlation (across the entire graph). However, this might result in a disconnected graph. Therefore,

the top five correlated edges of each node were also retained (even if these edges were not among the top 5% correlated edges). The graph

convolution filters were estimated using a 5-degree Chebyshev polynomial (Defferrard et al., 2016).

In the case of the UK Biobank:

� For all three DNNs, model ensemble was used to improve final test result: for each DNN and each behavior, five models were trained separately (with

different random initializations). The predictions were averaged across the five models yielding a final prediction. All four behavioral measures were
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z-normalized based on training data. The loss function for sex prediction was cross entropy, i.e., the output layer for sex prediction have 2 nodes

(FNN and BrainNetCNN) or filters (GCNN). The loss function was MSE for the other three measures. The output layer for these three measures have 1

node (FNN and BrainNetCNN) or filter (GCNN). Adam (Kingma and Ba, 2015) or SGD were used. See details in Tables 3, 4 and 5.

� For all three DNNs, we utilized the HORD algorithm (Regis and Shoemaker, 2013; Ilievski et al., 2017; Eriksson et al., 2019) to assist in hyper-

parameter tuning using the UK Biobank validation dataset. For each DNN, the HORD algorithm automatically tuned the DNN hyperparameters

within user-specified ranges of various hyperparameters. Not all hyperparameters were tuned by HORD because the speed and performance of

HORD worsened when too many hyperparameters were tuned. Therefore, we determined several hyperparameters based on our previous manual

tuning experience, i.e. momentum¼ 0.9, batch size¼ 128 (except GCNN’s batch size is 1 as it loads all data at once), weight initialization¼ Xavier

uniform (PyTorch) or Glorot uniform (Keras), Chebyshev polynomial basis filters with degree of 1 for GCNN.

� For FNN, we tuned the number of layers (2–4 layers), number of nodes for each layer (2–512 nodes), dropout rate (0–0.8), starting learning rate (1e-

2 to 1e-4), weight decay rate (1e-3 to 1e-7), and epochs to decrease learning rate (10–200 epochs) using HORD.

� For BrainNetCNN, we tuned the number of filters for e2e (2–48 filters), e2n (2–96 filters), and n2g layers (2–128 nodes), dropout rate (0–0.8),

learning rate (1e-2 to 1e-4), weight decay rate (1e-3 to 1e-7), and epochs to decrease the learning rate (10–200 epochs) using HORD.

� For GCNN, we tuned the number of filters for GCNN layer (2–128 filters), methods to generate graph adjacency matrix, dropout rate (0–0.8), L2
regularization rate (1e-3 to 1e-7), and learning rate (1e-2 to 1e-4) using HORD.

� For all DNNs, model was tuned for each behavior separately. Tables 3, 4 and 5 show the final DNN structures and hyperparameters.

� Final FNN structure is shown in Table 3. For FNN, dropout of 0.00275/0.309/0.285/0.526 (for sex/age/pairs matching/fluid intelligence

respectively) were added before each fully-connected layer. L2 regularization of 0.02 was added for layer 2. Weight decay of 2.662e-4/2.799e-5/

1.141e-6/1.425e-4 (for sex/age/pairs matching/fluid intelligence respectively) were applied to the weights of all fully connected layers.

� Final BrainNetCNN structure is shown in Table 4. For BrainNetCNN, dropout of 0.463/0.573/0.264/0.776 (for sex/age/pairs matching/fluid in-

telligence respectively) were added after the E2E, E2N, and N2G layers. LeakyReLU was replaced by linear activation for all four models.

� Final GCNN structure is shown in Table 5. Dropout of 0.0150/0.316/0.308/0.555 (for sex/age/pairs matching/fluid intelligence respectively) were

added before the first and second hidden layers. L2 regularization of 3.344e-4/9.181e-7/4.716e-7/7.183e-4 (for sex/age/pairs matching/fluid

intelligence respectively) were added for layer 1. The nodes of the graph corresponded to subjects. Edges were constructed based on Pearson’s

correlation between subjects’ vectorized RSFC. Thresholding of the graph was tuned separately for each behavior or demographic measure. For pairs

matching prediction, the top five correlated edges of each node were retained. For age, sex and fluid intelligence prediction, the graph was

thresholded by only retaining edges with top 5% correlation (across the entire graph). Furthermore, the top five correlated edges of each node were

also retained (even if these edges were not among the top 5% correlated edges). The graph convolution filters for all four GCNNs were estimated by a

1-degree Chebyshev polynomial (Defferrard et al., 2016).

Table 3

FNN architecture and hyperparameters for HCP and UK Biobank. Under “Model structure”, the numbers

represent the number of nodes at each fully connected layer. For example, “256, 96, 256, 58” represents a 4-layer

FNN with 256, 96, 256 and 58 nodes.

Dataset Predicting Model architecture Optimizer

HCP 58 behaviors 223, 128, 192, 58 SGD

UK Biobank Sex 3, 2 SGD

Age 9, 1 SGD

Pairs matching 415, 437, 1 SGD

Fluid intelligence 318, 357, 1 SGD

Table 4

BrainNetCNN architecture and hyperparameters for HCP and UK Biobank. Under “Model structure”, the

numbers represent the number of filters or nodes at each layer. For example, “15, 93, 106, 2” represents a

BrainNetCNN with 15 filters for the E2E layer, 93 filters for the E2N layer, 106 filters (nodes) for the N2G layer

and 2 nodes in the final fully connected layer. All BrainNetCNNs follow the same layer order: E2E, E2N, N2G and

then a final fully connected layer.

Dataset Predicting Model architecture Optimizer

HCP 58 behaviors 18, 19, 84, 58 SGD

UK Biobank Sex 38, 58, 7, 2 SGD

Age 22, 79, 91, 1 SGD

Pairs matching 27, 29, 54, 1 SGD

Fluid intelligence 40, 60, 41, 1 SGD

Table 5

GCNN architecture and hyperparameters for HCP and UK Biobank. Under “Model structure”, the numbers

represent the number of filters for each graph convolutional layer. For example, “64, 1” represents a 2-layer

GCNN with 64 and 1 filters respectively.

Dataset Predicting Model architecture Optimizer

HCP 58 behaviors 256, 58 SGD

UK Biobank Sex 71, 2 Adam

Age 10, 1 SGD

Pairs matching 3, 1 Adam

Fluid intelligence 72, 1 Adam
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