001     865872
005     20210130003205.0
020 _ _ |a 978-3-95806-424-9
024 7 _ |2 Handle
|a 2128/23301
024 7 _ |2 ISSN
|a 1866-1777
037 _ _ |a FZJ-2019-05158
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)165926
|a Hensling, Felix V. E.
|b 0
|e Corresponding author
|g male
|u fzj
245 _ _ |a Defect engineering in oxide thin films
|f - 2019-11-12
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2019
300 _ _ |a 10, 164 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1573548168_2410
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich. Reihe Information / Information
|v 59
502 _ _ |a RWTH Aachen, Diss., 2019
|b Dissertation
|c RWTH Aachen
|d 2019
520 _ _ |a Transition metal oxides constitute one of the most interesting material classes due to their wide variety of interesting and unusual properties. Often these properties are closely related to their defect structure. Within the transition metal oxide community SrTiO$_{3}$ is often referred to as a model material due to its well known defect chemistry. Therefore, in this work the possibilities of defect engineering are considered for this model material and the resulting properties are utilized for a highly interesting application: Resistive switching of SrTiO$_{3}$ in a metal insulator metal structure, a field of research where defects are key for the basic operation principle. The interest in transition metal oxides has been accompanied by an increased use of pulsed laser deposition, since it is a powerful and versatile method to achieve epitaxial complex metal oxide thin films. [...]
536 _ _ |0 G:(DE-HGF)POF3-899
|a 899 - ohne Topic (POF3-899)
|c POF3-899
|f POF III
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/865872/files/Information_59.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865872/files/Information_59.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865872
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165926
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21