000865888 001__ 865888
000865888 005__ 20250701125915.0
000865888 0247_ $$2doi$$a10.1007/s11085-019-09927-9
000865888 0247_ $$2ISSN$$a0030-770X
000865888 0247_ $$2ISSN$$a1573-4889
000865888 0247_ $$2WOS$$aWOS:000487923500012
000865888 037__ $$aFZJ-2019-05167
000865888 041__ $$aEnglish
000865888 082__ $$a540
000865888 1001_ $$0P:(DE-Juel1)129819$$aZurek, Joanna$$b0$$eCorresponding author$$ufzj
000865888 245__ $$aBehaviour of Metallic Materials in Simulated Service Environments of CO2/H2O Co‑electrolysis Systemsfor Power‑to‑X Application
000865888 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2019
000865888 3367_ $$2DRIVER$$aarticle
000865888 3367_ $$2DataCite$$aOutput Types/Journal article
000865888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573635368_3071
000865888 3367_ $$2BibTeX$$aARTICLE
000865888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865888 3367_ $$00$$2EndNote$$aJournal Article
000865888 520__ $$aIn the present study, the ferritic steel Crofer 22 H as potentially suitable interconnect material for SOEC stacks as well as joints between the steel and Ni- and CuNi contact materials was investigated with respect to the behaviour in simulated service environments of an SOEC system for CO2/H2O co-electrolysis. Exposures up to 1000 h at temperatures between 600 and 800 °C were carried out in CO2/H2O- and CO/H2-rich gases, thus simulating conditions at the stack inlet and outlet, respectively. It was found that the steel formed protective surface oxide scales consisting of chromia and/or Cr/Mn spinel in all studied test conditions. No indication of carbon transfer from the gas atmosphere into the steel was found even in the high carbon activity CO/H2-rich gas simulating stack outlet conditions. However, in the latter gas substantial carbon transfer from the gas to the steel via the Ni- or CuNi-wires resulted in the formation of a carburized zone with substantial M23C6 and/or M7C3 precipitate formation. This effect was more pronounced for the joints of the steel with the Ni-wire than with the CuNi-wire. In the gas simulating the service environment at the stack inlet, only minor carbon transfer was found in case of the Ni/steel joint at 600 °C but not at 800 °C. In case of the CuNi-wires, partial loss of contact between wire and interconnect steel and formation of Kirkendall voids as a consequence of interdiffusion between wire and steel were observed. The experimental results are discussed using thermodynamic considerations involving gas equilibria and stability of possible external and/or internal formation of oxide and carbide phases.
000865888 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000865888 536__ $$0G:(DE-Juel1)POWER-2-X-2016$$aP2X - Power-To-X (POWER-2-X-2016)$$cPOWER-2-X-2016$$x1
000865888 588__ $$aDataset connected to CrossRef
000865888 7001_ $$0P:(DE-Juel1)157695$$aMargaritis, Nikolaos$$b1$$ufzj
000865888 7001_ $$0P:(DE-Juel1)129766$$aNaumenko, Dmitry$$b2$$ufzj
000865888 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b3$$ufzj
000865888 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, Willem J.$$b4$$ufzj
000865888 773__ $$0PERI:(DE-600)2018581-9$$a10.1007/s11085-019-09927-9$$gVol. 92, no. 3-4, p. 353 - 377$$n3-4$$p353-377$$tOxidation of metals$$v92$$x0030-770X$$y2019
000865888 8564_ $$uhttps://juser.fz-juelich.de/record/865888/files/Zurek2019_Article_BehaviourOfMetallicMaterialsIn.pdf$$yRestricted
000865888 8564_ $$uhttps://juser.fz-juelich.de/record/865888/files/Zurek2019_Article_BehaviourOfMetallicMaterialsIn.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865888 909CO $$ooai:juser.fz-juelich.de:865888$$pVDB
000865888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129819$$aForschungszentrum Jülich$$b0$$kFZJ
000865888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157695$$aForschungszentrum Jülich$$b1$$kFZJ
000865888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129766$$aForschungszentrum Jülich$$b2$$kFZJ
000865888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b3$$kFZJ
000865888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b4$$kFZJ
000865888 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000865888 9141_ $$y2019
000865888 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOXID MET : 2017
000865888 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865888 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865888 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865888 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865888 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865888 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865888 920__ $$lyes
000865888 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000865888 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x1
000865888 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x2
000865888 980__ $$ajournal
000865888 980__ $$aVDB
000865888 980__ $$aI:(DE-Juel1)IEK-2-20101013
000865888 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000865888 980__ $$aI:(DE-Juel1)IEK-1-20101013
000865888 980__ $$aUNRESTRICTED
000865888 981__ $$aI:(DE-Juel1)ITE-20250108
000865888 981__ $$aI:(DE-Juel1)IMD-1-20101013
000865888 981__ $$aI:(DE-Juel1)IMD-2-20101013