000865890 001__ 865890
000865890 005__ 20240712112835.0
000865890 0247_ $$2doi$$a10.1016/j.jpowsour.2019.227292
000865890 0247_ $$2ISSN$$a0378-7753
000865890 0247_ $$2ISSN$$a1873-2755
000865890 0247_ $$2Handle$$a2128/23139
000865890 0247_ $$2WOS$$aWOS:000501401900016
000865890 037__ $$aFZJ-2019-05169
000865890 041__ $$aEnglish
000865890 082__ $$a620
000865890 1001_ $$0P:(DE-Juel1)169490$$aVibhu, V.$$b0$$eCorresponding author
000865890 245__ $$aLa2Ni1-xCoxO4þδ (x ¼ 0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells
000865890 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000865890 3367_ $$2DRIVER$$aarticle
000865890 3367_ $$2DataCite$$aOutput Types/Journal article
000865890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572426769_28444
000865890 3367_ $$2BibTeX$$aARTICLE
000865890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865890 3367_ $$00$$2EndNote$$aJournal Article
000865890 520__ $$aThe present study is focused on the development of alternative oxygen electrodes for Solid Oxide Electrolysis Cells (SOECs). Rare earth nickelates with general formula Ln2NiO4+δ (Ln = La, Pr or Nd) have shown good performance as oxygen electrodes with various electrolytes. Among them, La2NiO4+δ is most stable nickelate by itself however its electrochemical performance is lower compare to Pr2NiO4+δ. Therefore, to further enhance the physico-chemical properties, electrochemical performance of La2NiO4+δ as SOECs oxygen electrode, herein, we have performed the substitution of nickel with cobalt. Three compositions (x = 0.0, 0.1 and 0.2) were mainly considered and completely characterized using several techniques. The symmetrical as well as single cells were then prepared and electrochemically characterized using DC- and AC-techniques in the temperature range 700–900 °C. The electrode reaction mechanism was also investigated by recording the impedance spectra at different pO2. With cobalt substitution, an improvement in electrochemical performance as well lower degradation rate is observed during long term SOEC operation at −1 A⋅cm−2 current density at 800 °C with 50% H2 and 50% H2O feed gas mixture.
000865890 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000865890 588__ $$aDataset connected to CrossRef
000865890 7001_ $$0P:(DE-Juel1)129936$$aVinke, I. C.$$b1$$ufzj
000865890 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
000865890 7001_ $$0P:(DE-HGF)0$$aBassat, J.-M.$$b3
000865890 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b4$$ufzj
000865890 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2019.227292$$gVol. 444, p. 227292 -$$p227292 -$$tJournal of power sources$$v444$$x0378-7753$$y2019
000865890 8564_ $$uhttps://juser.fz-juelich.de/record/865890/files/Invoice_OAD0000015141.pdf
000865890 8564_ $$uhttps://juser.fz-juelich.de/record/865890/files/1-s2.0-S0378775319312856-main.pdf$$yOpenAccess
000865890 8564_ $$uhttps://juser.fz-juelich.de/record/865890/files/1-s2.0-S0378775319312856-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865890 8564_ $$uhttps://juser.fz-juelich.de/record/865890/files/Invoice_OAD0000015141.pdf?subformat=pdfa$$xpdfa
000865890 8767_ $$8OAD0000015141$$92019-10-14$$d2019-10-16$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2019-05094
000865890 909CO $$ooai:juser.fz-juelich.de:865890$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000865890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169490$$aForschungszentrum Jülich$$b0$$kFZJ
000865890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129936$$aForschungszentrum Jülich$$b1$$kFZJ
000865890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000865890 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
000865890 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aCNRS Uni de Bordeaux $$b3
000865890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b4$$kFZJ
000865890 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000865890 9141_ $$y2019
000865890 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865890 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865890 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865890 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865890 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000865890 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000865890 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865890 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865890 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865890 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865890 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865890 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865890 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865890 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865890 920__ $$lyes
000865890 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000865890 9801_ $$aFullTexts
000865890 980__ $$ajournal
000865890 980__ $$aVDB
000865890 980__ $$aI:(DE-Juel1)IEK-9-20110218
000865890 980__ $$aUNRESTRICTED
000865890 980__ $$aAPC
000865890 981__ $$aI:(DE-Juel1)IET-1-20110218