001     865890
005     20240712112835.0
024 7 _ |a 10.1016/j.jpowsour.2019.227292
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/23139
|2 Handle
024 7 _ |a WOS:000501401900016
|2 WOS
037 _ _ |a FZJ-2019-05169
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Vibhu, V.
|0 P:(DE-Juel1)169490
|b 0
|e Corresponding author
245 _ _ |a La2Ni1-xCoxO4þδ (x ¼ 0.0, 0.1 and 0.2) based efficient oxygen electrode materials for solid oxide electrolysis cells
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1572426769_28444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The present study is focused on the development of alternative oxygen electrodes for Solid Oxide Electrolysis Cells (SOECs). Rare earth nickelates with general formula Ln2NiO4+δ (Ln = La, Pr or Nd) have shown good performance as oxygen electrodes with various electrolytes. Among them, La2NiO4+δ is most stable nickelate by itself however its electrochemical performance is lower compare to Pr2NiO4+δ. Therefore, to further enhance the physico-chemical properties, electrochemical performance of La2NiO4+δ as SOECs oxygen electrode, herein, we have performed the substitution of nickel with cobalt. Three compositions (x = 0.0, 0.1 and 0.2) were mainly considered and completely characterized using several techniques. The symmetrical as well as single cells were then prepared and electrochemically characterized using DC- and AC-techniques in the temperature range 700–900 °C. The electrode reaction mechanism was also investigated by recording the impedance spectra at different pO2. With cobalt substitution, an improvement in electrochemical performance as well lower degradation rate is observed during long term SOEC operation at −1 A⋅cm−2 current density at 800 °C with 50% H2 and 50% H2O feed gas mixture.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vinke, I. C.
|0 P:(DE-Juel1)129936
|b 1
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 2
|u fzj
700 1 _ |a Bassat, J.-M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a de Haart, L. G. J.
|0 P:(DE-Juel1)129952
|b 4
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2019.227292
|g Vol. 444, p. 227292 -
|0 PERI:(DE-600)1491915-1
|p 227292 -
|t Journal of power sources
|v 444
|y 2019
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/865890/files/Invoice_OAD0000015141.pdf
856 4 _ |u https://juser.fz-juelich.de/record/865890/files/1-s2.0-S0378775319312856-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865890/files/1-s2.0-S0378775319312856-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865890/files/Invoice_OAD0000015141.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:865890
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169490
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129936
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a CNRS Uni de Bordeaux
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129952
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21