000865896 001__ 865896 000865896 005__ 20240711092300.0 000865896 0247_ $$2doi$$a10.1063/1.5090100 000865896 0247_ $$2ISSN$$a2468-080X 000865896 0247_ $$2ISSN$$a2468-2047 000865896 0247_ $$2Handle$$a2128/23143 000865896 0247_ $$2WOS$$aWOS:000483877600001 000865896 037__ $$aFZJ-2019-05173 000865896 082__ $$a530 000865896 1001_ $$0P:(DE-Juel1)129747$$aLinke, Jochen$$b0 000865896 245__ $$aChallenges for Plasma-Facing Components in Nuclear Fusion 000865896 260__ $$aAmsterdam$$bElsevier$$c2019 000865896 3367_ $$2DRIVER$$aarticle 000865896 3367_ $$2DataCite$$aOutput Types/Journal article 000865896 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571814290_502 000865896 3367_ $$2BibTeX$$aARTICLE 000865896 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000865896 3367_ $$00$$2EndNote$$aJournal Article 000865896 520__ $$aThe interaction processes between the burning plasma and the first wall in a fusion reactor are diverse: the first wall will be exposed to extreme thermal loads of up to several tens of megawatts per square meter during quasistationary operation, combined with repeated intense thermal shocks (with energy densities of up to several megajoules per square meter and pulse durations on a millisecond time scale). In addition to these thermal loads, the wall will be subjected to bombardment by plasma ions and neutral particles (D, T, and He) and by energetic neutrons with energies up to 14 MeV. Hopefully, ITER will not only demonstrate that thermonuclear fusion of deuterium and tritium is feasible in magnetic confinement regimes; it will also act as a first test device for plasma-facing materials (PFMs) and plasma-facing components (PFCs) under realistic synergistic loading scenarios that cover all the above-mentioned load types. In the absence of an integrated test device, material tests are being performed primarily in specialized facilities that concentrate only on the most essential material properties. New multipurpose test facilities are now available that can also focus on more complex loading scenarios and thus help to minimize the risk of an unexpected material or component failure. Thermonuclear fusion—both with magnetic and with inertial confinement—is making great progress, and the goal of scientific break-even will be reached soon. However, to achieve that end, significant technical problems, particularly in the field of high-temperature and radiation-resistant materials, must be solved. With ITER, the first nuclear reactor that burns a deuterium–tritium plasma with a fusion power gain Q ≥ 10 will start operation in the next decade. To guarantee safe operation of this rather sophisticated fusion device, new PFMs and PFCs that are qualified to withstand the harsh environments in such a tokamak reactor have been developed and are now entering the manufacturing stage 000865896 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000865896 588__ $$aDataset connected to CrossRef 000865896 7001_ $$0P:(DE-Juel1)144673$$aDu, Juan$$b1 000865896 7001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Thorsten$$b2 000865896 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, Gerald$$b3 000865896 7001_ $$0P:(DE-Juel1)159558$$aSpilker, Benjamin$$b4 000865896 7001_ $$0P:(DE-Juel1)156279$$aSteudel, Isabel$$b5 000865896 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b6$$eCorresponding author 000865896 773__ $$0PERI:(DE-600)2858469-7$$a10.1063/1.5090100$$gVol. 4, no. 5, p. 056201 -$$n5$$p056201$$tMatter and radiation at extremes$$v4$$x2468-080X$$y2019 000865896 8564_ $$uhttps://juser.fz-juelich.de/record/865896/files/1.5090100.pdf$$yOpenAccess 000865896 8564_ $$uhttps://juser.fz-juelich.de/record/865896/files/1.5090100.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000865896 909CO $$ooai:juser.fz-juelich.de:865896$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000865896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b2$$kFZJ 000865896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b3$$kFZJ 000865896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159558$$aForschungszentrum Jülich$$b4$$kFZJ 000865896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b6$$kFZJ 000865896 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000865896 9141_ $$y2019 000865896 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000865896 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000865896 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000865896 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000865896 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review 000865896 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 000865896 9801_ $$aFullTexts 000865896 980__ $$ajournal 000865896 980__ $$aVDB 000865896 980__ $$aUNRESTRICTED 000865896 980__ $$aI:(DE-Juel1)IEK-2-20101013 000865896 981__ $$aI:(DE-Juel1)IMD-1-20101013