001     865896
005     20240711092300.0
024 7 _ |a 10.1063/1.5090100
|2 doi
024 7 _ |a 2468-080X
|2 ISSN
024 7 _ |a 2468-2047
|2 ISSN
024 7 _ |a 2128/23143
|2 Handle
024 7 _ |a WOS:000483877600001
|2 WOS
037 _ _ |a FZJ-2019-05173
082 _ _ |a 530
100 1 _ |a Linke, Jochen
|0 P:(DE-Juel1)129747
|b 0
245 _ _ |a Challenges for Plasma-Facing Components in Nuclear Fusion
260 _ _ |a Amsterdam
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571814290_502
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interaction processes between the burning plasma and the first wall in a fusion reactor are diverse: the first wall will be exposed to extreme thermal loads of up to several tens of megawatts per square meter during quasistationary operation, combined with repeated intense thermal shocks (with energy densities of up to several megajoules per square meter and pulse durations on a millisecond time scale). In addition to these thermal loads, the wall will be subjected to bombardment by plasma ions and neutral particles (D, T, and He) and by energetic neutrons with energies up to 14 MeV. Hopefully, ITER will not only demonstrate that thermonuclear fusion of deuterium and tritium is feasible in magnetic confinement regimes; it will also act as a first test device for plasma-facing materials (PFMs) and plasma-facing components (PFCs) under realistic synergistic loading scenarios that cover all the above-mentioned load types. In the absence of an integrated test device, material tests are being performed primarily in specialized facilities that concentrate only on the most essential material properties. New multipurpose test facilities are now available that can also focus on more complex loading scenarios and thus help to minimize the risk of an unexpected material or component failure. Thermonuclear fusion—both with magnetic and with inertial confinement—is making great progress, and the goal of scientific break-even will be reached soon. However, to achieve that end, significant technical problems, particularly in the field of high-temperature and radiation-resistant materials, must be solved. With ITER, the first nuclear reactor that burns a deuterium–tritium plasma with a fusion power gain Q ≥ 10 will start operation in the next decade. To guarantee safe operation of this rather sophisticated fusion device, new PFMs and PFCs that are qualified to withstand the harsh environments in such a tokamak reactor have been developed and are now entering the manufacturing stage
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Du, Juan
|0 P:(DE-Juel1)144673
|b 1
700 1 _ |a Loewenhoff, Thorsten
|0 P:(DE-Juel1)129751
|b 2
700 1 _ |a Pintsuk, Gerald
|0 P:(DE-Juel1)129778
|b 3
700 1 _ |a Spilker, Benjamin
|0 P:(DE-Juel1)159558
|b 4
700 1 _ |a Steudel, Isabel
|0 P:(DE-Juel1)156279
|b 5
700 1 _ |a Wirtz, Marius
|0 P:(DE-Juel1)129811
|b 6
|e Corresponding author
773 _ _ |a 10.1063/1.5090100
|g Vol. 4, no. 5, p. 056201 -
|0 PERI:(DE-600)2858469-7
|n 5
|p 056201
|t Matter and radiation at extremes
|v 4
|y 2019
|x 2468-080X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865896/files/1.5090100.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865896/files/1.5090100.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865896
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129751
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159558
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129811
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21