000865897 001__ 865897
000865897 005__ 20240711113948.0
000865897 0247_ $$2doi$$a10.1016/j.nme.2019.100680
000865897 0247_ $$2Handle$$a2128/23144
000865897 0247_ $$2WOS$$aWOS:000500930800014
000865897 037__ $$aFZJ-2019-05174
000865897 082__ $$a624
000865897 1001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b0$$eCorresponding author
000865897 245__ $$aHigh Pulse Numbe Thermal Shock Testing of Tungsten Alloys Produced by Powder Injection Molding
000865897 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000865897 3367_ $$2DRIVER$$aarticle
000865897 3367_ $$2DataCite$$aOutput Types/Journal article
000865897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571815632_502
000865897 3367_ $$2BibTeX$$aARTICLE
000865897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865897 3367_ $$00$$2EndNote$$aJournal Article
000865897 520__ $$aThe investigation of plasma facing materials (PFM) subjected to a large number (≥10,000) of thermal shocks is of interest to determine long term morphological changes which might influence component lifetime in and plasma performance of a fusion reactor. The electron beam facility JUDITH 2 was used to simulate these conditions experimentally. In this study eight different tungsten grades produced by powder injection molding (PIM) were investigated: Two pure tungsten grades, one with 2 wt% Y2O3, three with 1, 2 and 3 wt% TiC, and two with 0.5 and 1 wt% TaC. Samples of 10 × 10 × 4 mm³ were brazed to a copper cooling structure and subjected to 105 thermal shocks of 0.5 ms duration and an intensity of Labs = 0.55 GW/m² (FHF = 12 MWs½/m2) at a base temperature of Tbase = 700 °C.The PIM grades showed damages in general comparable with a sintered and forged pure tungsten reference grade (>99.97 wt% W) that complies with the ITER specifications. One exception was the 2 wt% TiC doped material which failed early during the experiment by delamination of a large part of the surface. The Y2O3 doped material showed a comparatively good performance with respect to crack width (<15 μm) and roughening (Ra = 0.75 μm), but showed melt droplets of ∼3–4 μm diameter, while the 1 wt% TiC doped material showed wide cracks (up to 50 μm) and strong roughening (Ra = 2.5 μm). The paper discusses the post-mortem analysis of all grades, comparing them with respect to roughness (from laser profilometry), crack network characteristics and local melt droplet formation or other special morphological features (from SEM images) as well as crack depth (from metallographic cross sections).
000865897 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000865897 588__ $$aDataset connected to CrossRef
000865897 7001_ $$0P:(DE-HGF)0$$aAntusch, S.$$b1
000865897 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b2
000865897 7001_ $$0P:(DE-HGF)0$$aRieth, M.$$b3
000865897 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b4$$ufzj
000865897 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.100680$$gVol. 20, p. 100680 -$$p100680$$tNuclear materials and energy$$v20$$x2352-1791$$y2019
000865897 8564_ $$uhttps://juser.fz-juelich.de/record/865897/files/1-s2.0-S2352179119300122-main.pdf$$yOpenAccess
000865897 8564_ $$uhttps://juser.fz-juelich.de/record/865897/files/1-s2.0-S2352179119300122-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865897 909CO $$ooai:juser.fz-juelich.de:865897$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich$$b0$$kFZJ
000865897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b2$$kFZJ
000865897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b4$$kFZJ
000865897 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000865897 9141_ $$y2019
000865897 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865897 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865897 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865897 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000865897 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865897 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865897 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000865897 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865897 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000865897 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000865897 9801_ $$aFullTexts
000865897 980__ $$ajournal
000865897 980__ $$aVDB
000865897 980__ $$aUNRESTRICTED
000865897 980__ $$aI:(DE-Juel1)IEK-2-20101013
000865897 980__ $$aI:(DE-Juel1)IEK-4-20101013
000865897 981__ $$aI:(DE-Juel1)IMD-1-20101013
000865897 981__ $$aI:(DE-Juel1)IFN-1-20101013