000865899 001__ 865899
000865899 005__ 20240711092301.0
000865899 0247_ $$2doi$$a10.1088/1741-4326/ab0a76
000865899 0247_ $$2ISSN$$a0029-5515
000865899 0247_ $$2ISSN$$a1741-4326
000865899 0247_ $$2altmetric$$aaltmetric:57006173
000865899 0247_ $$2WOS$$aWOS:000461425200001
000865899 037__ $$aFZJ-2019-05176
000865899 082__ $$a620
000865899 1001_ $$00000-0003-3674-3191$$aRindt, P.$$b0$$eCorresponding author
000865899 245__ $$aUsing 3D-Printed Tungsten to Optimize Liquid Metal Divertor Targets for Flow and Thermal Stresses
000865899 260__ $$aVienna$$bIAEA$$c2019
000865899 3367_ $$2DRIVER$$aarticle
000865899 3367_ $$2DataCite$$aOutput Types/Journal article
000865899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571816761_502
000865899 3367_ $$2BibTeX$$aARTICLE
000865899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865899 3367_ $$00$$2EndNote$$aJournal Article
000865899 520__ $$aLiquid metal divertors aim to provide a more robust alternative to conventional tungsten divertors. However, they still require a solid substrate to confine the liquid metal. This work proposes a novel design philosophy for liquid metal divertor targets, which allows for a two orders of magnitude reduction of thermal stresses compared to the state-of-the-art monoblock designs. The main principle is based on a 3D-printed tungsten structure, which has low connectedness in the direction perpendicular to the thermal gradient, and as a result also short length scales. This allows for thermal expansion. Voids in the structure are filled with liquid lithium which can conduct heat and reduce the surface temperature via vapor shielding, further suppressing thermal stresses. To demonstrate the effectiveness of this design strategy, an existing liquid metal concept is re-designed, fabricated, and tested on the linear plasma device Magnum-PSI. The thermo-mechanical finite element method analysis of the improved design matches the temperature response during the experiments, and indicates that thermal stresses are two orders of magnitude lower than in the conventional monoblock designs. The relaxation of the strength requirement allows for much larger failure margins and consequently for many new design possibilities.
000865899 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000865899 588__ $$aDataset connected to CrossRef
000865899 7001_ $$0P:(DE-HGF)0$$aMata González, J.$$b1
000865899 7001_ $$0P:(DE-HGF)0$$aHoogerhuis, P.$$b2
000865899 7001_ $$0P:(DE-HGF)0$$avan den Bosch, P.$$b3
000865899 7001_ $$0P:(DE-HGF)0$$avan Maris, M.$$b4
000865899 7001_ $$0P:(DE-HGF)0$$aTerentyev, D.$$b5
000865899 7001_ $$0P:(DE-HGF)0$$aYin, C.$$b6
000865899 7001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b7
000865899 7001_ $$0P:(DE-HGF)0$$aLopes Cardozo, N. J.$$b8
000865899 7001_ $$00000-0003-4029-0308$$avan Dommelen, J. A. W.$$b9
000865899 7001_ $$00000-0002-5066-015X$$aMorgan, T. W.$$b10
000865899 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/ab0a76$$gVol. 59, no. 5, p. 054001 -$$n5$$p054001$$tNuclear fusion$$v59$$x1741-4326$$y2019
000865899 8564_ $$uhttps://juser.fz-juelich.de/record/865899/files/Rindt_2019_Nucl._Fusion_59_054001-1.pdf$$yRestricted
000865899 8564_ $$uhttps://juser.fz-juelich.de/record/865899/files/Rindt_2019_Nucl._Fusion_59_054001-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865899 909CO $$ooai:juser.fz-juelich.de:865899$$pVDB
000865899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b7$$kFZJ
000865899 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000865899 9141_ $$y2019
000865899 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000865899 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000865899 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2017
000865899 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865899 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865899 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865899 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865899 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865899 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865899 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865899 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865899 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865899 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000865899 980__ $$ajournal
000865899 980__ $$aVDB
000865899 980__ $$aI:(DE-Juel1)IEK-2-20101013
000865899 980__ $$aUNRESTRICTED
000865899 981__ $$aI:(DE-Juel1)IMD-1-20101013