001     865912
005     20210130003215.0
024 7 _ |a 10.1103/PhysRevMaterials.3.084410
|2 doi
024 7 _ |a 2128/23220
|2 Handle
024 7 _ |a altmetric:62384962
|2 altmetric
024 7 _ |a WOS:000480695600004
|2 WOS
037 _ _ |a FZJ-2019-05189
082 _ _ |a 530
100 1 _ |a Titov, Ivan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Effect of grain-boundary diffusion process on the geometry of the grain microstructure of Nd − Fe − B nanocrystalline magnets
260 _ _ |a College Park, MD
|c 2019
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582037340_32444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hot-deformed anisotropic Nd−Fe−B nanocrystalline magnets have been subjected to the grain-boundary diffusion process (GBDP) using a Pr70Cu30 eutectic alloy. The resulting grain microstructure, consisting of shape-anisotropic Nd−Fe−B nanocrystals surrounded by a Pr−Cu-rich intergranular grain-boundary phase, has been investigated using unpolarized small-angle neutron scattering and very small-angle neutron scattering. The neutron data have been analyzed using the generalized Guinier-Porod model and by computing, model independently, the distance distribution function. We find that the GBDP results in a change of the geometry of the scattering particles: In the small-q regime, the scattering from the as-prepared sample exhibits a slope of about 2, which is characteristic for the scattering from two-dimensional platelet-shaped objects, while the GBDP sample manifests a slope of about 1, which is the scattering signature of one-dimensional elongated objects. The evolution of the Porod exponent indicates the smoothing of the grain surfaces due to the GBDP, which is accompanied by an increase of the coercivity.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS3-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|x 0
700 1 _ |a Barbieri, Massimiliano
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bender, Philipp
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Peral, Inma
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kohlbrecher, Joachim
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Saito, Kotaro
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pipich, Vitaliy
|0 P:(DE-Juel1)130893
|b 6
700 1 _ |a Yano, Masao
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Michels, Andreas
|0 0000-0002-2786-295X
|b 8
773 _ _ |a 10.1103/PhysRevMaterials.3.084410
|g Vol. 3, no. 8, p. 084410
|0 PERI:(DE-600)2898355-5
|n 8
|p 084410
|t Physical review materials
|v 3
|y 2019
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/865912/files/PhysRevMaterials.3.084410.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/865912/files/PhysRevMaterials.3.084410.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865912
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130893
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21