Hauptseite > Publikationsdatenbank > Micromechanical Assessment of Al/Y-substituted NASICON Solid Electrolytes > print |
001 | 865916 | ||
005 | 20240709094327.0 | ||
024 | 7 | _ | |a 10.1016/j.ceramint.2019.07.114 |2 doi |
024 | 7 | _ | |a 0272-8842 |2 ISSN |
024 | 7 | _ | |a 0392-2960 |2 ISSN |
024 | 7 | _ | |a 2128/23388 |2 Handle |
024 | 7 | _ | |a WOS:000493212500030 |2 WOS |
037 | _ | _ | |a FZJ-2019-05193 |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Nonemacher, Juliane Franciele |0 P:(DE-Juel1)168112 |b 0 |
245 | _ | _ | |a Micromechanical Assessment of Al/Y-substituted NASICON Solid Electrolytes |
260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1573823119_22185 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Al/Y-substituted NASICON solid electrolytes are promising for novel solid state batteries. The solid solutions Na1+2xAlxYxZr2-2x(PO4)3 (NAYZPx) and Na3+2xAlxYxZr2-2x(SiO4)2(PO4) (NAYZSiPx) that crystallize in this structure are characterized by depth-sensitive indentation technique to determine their micro-mechanical properties. NAYZPx is rhombohedral, whereas NAYZSiPx changes from monoclinic to rhombohedral phase depending on substitutional level and temperature. For rhombohedral NAYZPx elastic moduli are in the range ~72–82 GPa and hardness values are in the range ~4.8–5.8 GPa, whereas for NAYZSiPx the elastic moduli are with the range ~72–88 GPa and hardness ~5.6–7.6 GPa, respectively. The fracture toughness values for both systems, as determined by Vickers indentation, are rather independent of the applied load being with the range 1.30–1.58 MPa m0.5. Cracks typically show a mixed intergranular/transgranular crack mode. |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Naqash, Sahir |0 P:(DE-Juel1)165865 |b 1 |u fzj |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 2 |u fzj |
700 | 1 | _ | |a Malzbender, Jürgen |0 P:(DE-Juel1)129755 |b 3 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.ceramint.2019.07.114 |g Vol. 45, no. 17, p. 21308 - 21314 |0 PERI:(DE-600)2018052-4 |n 17A |p 21308 - 21314 |t Ceramics international |v 45 |y 2019 |x 0272-8842 |
856 | 4 | _ | |y Published on 2019-07-09. Available in OpenAccess from 2021-07-09. |u https://juser.fz-juelich.de/record/865916/files/11-jun-2019%20%20Micromechanical%20Assessment%20of%20AlY-substituted%20NASICON_vFT_vSN.pdf |
856 | 4 | _ | |y Published on 2019-07-09. Available in OpenAccess from 2021-07-09. |x pdfa |u https://juser.fz-juelich.de/record/865916/files/11-jun-2019%20%20Micromechanical%20Assessment%20of%20AlY-substituted%20NASICON_vFT_vSN.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:865916 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165865 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129667 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129755 |
913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CERAM INT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|