001     865917
005     20240711092301.0
024 7 _ |a 10.1007/s10853-019-03982-y
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a 2128/23369
|2 Handle
024 7 _ |a WOS:000489150200004
|2 WOS
037 _ _ |a FZJ-2019-05194
082 _ _ |a 670
100 1 _ |a von Helden, S.
|0 P:(DE-Juel1)171684
|b 0
|e Corresponding author
245 _ _ |a Strength of Transparent Ceramic Composites With Spinel
260 _ _ |a Dordrecht [u.a.]
|c 2019
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1571834897_1094
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Protective windows have to be very hard and possess a certain thickness to provide a good wear resistance, as well as low weight and cost to be used economically. But, common transparent systems like bulletproof glass are quite heavy because they need a minimum thickness to provide protection. Therefore, laminate systems consisting of a thin transparent ceramic layer with a very high hardness and a low-cost as well as a lower-weight transparent substrate are considered in the current work as an alternative solution to thick monolithic ceramics. Since reliability is a main aspect for the application, mechanical characterization is carried out using ring-on-ring bending tests for different laminate structures. Apart from various commercially available hardened and unhardened glasses, also a polymer material is taken into account as thicker substrate material for a thin spinel ceramic. In particular, polycarbonate as well as float glass, B270 and Borofloat® by Schott or Gorilla glass® 3 by Corning are used as substrate materials. Tests are carried out with either ceramic or substrate material under tension. Properties derived using laminate theory are compared and discussed with respect to the properties of the individual materials. The Young’s moduli of the monolithic materials are measured via an impulse excitation technique. In an outlook, implications for the application of the laminates are discussed.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Krüger, M.
|0 P:(DE-Juel1)172056
|b 1
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 2
773 _ _ |a 10.1007/s10853-019-03982-y
|g Vol. 54, no. 24, p. 14666 - 14676
|0 PERI:(DE-600)2015305-3
|n 24
|p 14666 - 14676
|t Journal of materials science
|v 54
|y 2019
|x 1573-4803
856 4 _ |u https://juser.fz-juelich.de/record/865917/files/Helden2019_Article_StrengthOfTransparentCeramicCo.pdf
|y Restricted
856 4 _ |y Published on 2019-09-03. Available in OpenAccess from 2020-09-03.
|u https://juser.fz-juelich.de/record/865917/files/von%20Helden_Strength%20of%20transparent%20ceramic%20composites.pdf
856 4 _ |y Published on 2019-09-03. Available in OpenAccess from 2020-09-03.
|x pdfa
|u https://juser.fz-juelich.de/record/865917/files/von%20Helden_Strength%20of%20transparent%20ceramic%20composites.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865917
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129755
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21