000865946 001__ 865946
000865946 005__ 20210130003222.0
000865946 0247_ $$2Handle$$a2128/23359
000865946 037__ $$aFZJ-2019-05212
000865946 1001_ $$0P:(DE-Juel1)176497$$aWiersch, Lisa$$b0$$eCorresponding author$$ufzj
000865946 245__ $$aSex classification from resting-state functional brain networks$$f2018-08-01 - 2019-07-02
000865946 260__ $$c2019
000865946 300__ $$a61
000865946 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000865946 3367_ $$02$$2EndNote$$aThesis
000865946 3367_ $$2BibTeX$$aMASTERSTHESIS
000865946 3367_ $$2DRIVER$$amasterThesis
000865946 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1573639549_5622
000865946 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000865946 502__ $$aMasterarbeit, Heinrich-Heine Universität Düsseldorf, 2019$$bMasterarbeit$$cHeinrich-Heine Universität Düsseldorf$$d2019
000865946 520__ $$aSex differences in the brain have received a wide interest in neuroscientific research. Insteadof task-based group comparisons, the present study employed a machine-learning (ML)-approach to examine whether the resting-state functional connectivity of 12 meta-analyticallydefined networks carries enough information to accurately predict the sex of a person. It washypothesized that especially emotion-related networks should classify well. Sex classificationanalyses were conducted in the datasets of the healthy brain network (HBN, n = 218) theRockland Sample of the enhanced Nathan Kline Institute (eNKI, n = 574), the HumanConnectome Project (HCP, n = 734) and the 1000BRAINS-dataset (n = 995). The MLalgorithmsLASSO, LSVM, Ridge and RVM were used for this classification approach. Theresults showed that the eNKI- and HCP-datasets as well as the algorithms LASSO and Ridgereceived on average higher classification accuracies than the other datasets and algorithms.The networks of autobiographical and semantic memory reached the highest accuracies of allnetworks. Taken together, the results did not support the initial hypothesis. Instead, theresults generally displayed a strong dependency on the datasets and ML-algorithms.
000865946 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000865946 8564_ $$uhttps://juser.fz-juelich.de/record/865946/files/Sex%20classification%20from%20resting-state%20functional%20brain%20networks.pdf$$yOpenAccess
000865946 8564_ $$uhttps://juser.fz-juelich.de/record/865946/files/Sex%20classification%20from%20resting-state%20functional%20brain%20networks.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865946 909CO $$ooai:juser.fz-juelich.de:865946$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865946 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176497$$aForschungszentrum Jülich$$b0$$kFZJ
000865946 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000865946 9141_ $$y2019
000865946 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865946 920__ $$lyes
000865946 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000865946 980__ $$amaster
000865946 980__ $$aVDB
000865946 980__ $$aUNRESTRICTED
000865946 980__ $$aI:(DE-Juel1)INM-7-20090406
000865946 9801_ $$aFullTexts