000865947 001__ 865947
000865947 005__ 20240712084528.0
000865947 0247_ $$2doi$$a10.1109/JPHOTOV.2019.2947131
000865947 0247_ $$2altmetric$$aaltmetric:73251609
000865947 0247_ $$2WOS$$aWOS:000535673700006
000865947 037__ $$aFZJ-2019-05213
000865947 082__ $$a530
000865947 1001_ $$0P:(DE-Juel1)165230$$aKöhler, Malte$$b0$$eCorresponding author
000865947 245__ $$aOptimization of Transparent Passivating Contact for Crystalline Silicon Solar Cells
000865947 260__ $$aNew York, NY$$bIEEE$$c2020
000865947 3367_ $$2DRIVER$$aarticle
000865947 3367_ $$2DataCite$$aOutput Types/Journal article
000865947 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1577788359_13801
000865947 3367_ $$2BibTeX$$aARTICLE
000865947 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865947 3367_ $$00$$2EndNote$$aJournal Article
000865947 520__ $$aA highly transparent front contact layer system for crystalline silicon (c-Si) solar cells is investigated and optimized. This contact system consists of a wet-chemically grown silicon tunnel oxide, a hydrogenated microcrystalline silicon carbide [SiO 2 /µc-SiC:H( n )] prepared by hot-wire chemical vapor deposition (HWCVD), and a sputter-deposited indium doped tin oxide. Because of the exclusive use of very high bandgap materials, this system is more transparent for the solar light than state of the art amorphous (a-Si:H) or polycrystalline silicon contacts. By investigating the electrical conductivity of the µc-SiC:H( n ) and the influence of the hot-wire filament temperature on the contact properties, we find that the electrical conductivity of µc-SiC:H( n ) can be increased by 12 orders of magnitude to a maximum of 0.9 S/cm due to an increased doping density and crystallite size. This optimization of the electrical conductivity leads to a strong decrease in contact resistivity. Applying this SiO 2 /µc-SiC:H( n ) transparent passivating front side contact to crystalline solar cells with an a-Si:H/c-Si heterojunction back contact we achieve a maximum power conversion efficiency of 21.6% and a short-circuit current density of 39.6 mA/cm 2 . All devices show superior quantum efficiency in the short wavelength region compared to the reference cells with a-Si:H/c-Si heterojunction front contacts. Furthermore, these transparent passivating contacts operate without any post processing treatments, e.g., forming gas annealing or high-temperature recrystallization.
000865947 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000865947 7001_ $$0P:(DE-Juel1)162141$$aPomaska, Manuel$$b1
000865947 7001_ $$0P:(DE-Juel1)179571$$aZamchiy, Alexandr$$b2
000865947 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b3
000865947 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b4
000865947 7001_ $$0P:(DE-Juel1)130795$$aLentz, Florian$$b5
000865947 7001_ $$0P:(DE-Juel1)174415$$aLi, Shenghao$$b6
000865947 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b7
000865947 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b8
000865947 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b9
000865947 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b10
000865947 773__ $$0PERI:(DE-600)2585714-9$$a10.1109/JPHOTOV.2019.2947131$$n1$$p46-53$$tIEEE journal of photovoltaics$$v10$$x2156-3381$$y2020
000865947 8564_ $$uhttps://juser.fz-juelich.de/record/865947/files/08889659.pdf$$yRestricted
000865947 8564_ $$uhttps://juser.fz-juelich.de/record/865947/files/08889659.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865947 909CO $$ooai:juser.fz-juelich.de:865947$$pVDB
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165230$$aForschungszentrum Jülich$$b0$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162141$$aForschungszentrum Jülich$$b1$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179571$$aForschungszentrum Jülich$$b2$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b3$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b4$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130795$$aForschungszentrum Jülich$$b5$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174415$$aForschungszentrum Jülich$$b6$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b7$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich$$b8$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b9$$kFZJ
000865947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b10$$kFZJ
000865947 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000865947 9141_ $$y2020
000865947 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J PHOTOVOLT : 2017
000865947 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865947 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865947 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865947 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865947 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865947 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865947 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865947 920__ $$lyes
000865947 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000865947 980__ $$ajournal
000865947 980__ $$aVDB
000865947 980__ $$aI:(DE-Juel1)IEK-5-20101013
000865947 980__ $$aUNRESTRICTED
000865947 981__ $$aI:(DE-Juel1)IMD-3-20101013