001     865947
005     20240712084528.0
024 7 _ |a 10.1109/JPHOTOV.2019.2947131
|2 doi
024 7 _ |a altmetric:73251609
|2 altmetric
024 7 _ |a WOS:000535673700006
|2 WOS
037 _ _ |a FZJ-2019-05213
082 _ _ |a 530
100 1 _ |a Köhler, Malte
|0 P:(DE-Juel1)165230
|b 0
|e Corresponding author
245 _ _ |a Optimization of Transparent Passivating Contact for Crystalline Silicon Solar Cells
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1577788359_13801
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A highly transparent front contact layer system for crystalline silicon (c-Si) solar cells is investigated and optimized. This contact system consists of a wet-chemically grown silicon tunnel oxide, a hydrogenated microcrystalline silicon carbide [SiO 2 /µc-SiC:H( n )] prepared by hot-wire chemical vapor deposition (HWCVD), and a sputter-deposited indium doped tin oxide. Because of the exclusive use of very high bandgap materials, this system is more transparent for the solar light than state of the art amorphous (a-Si:H) or polycrystalline silicon contacts. By investigating the electrical conductivity of the µc-SiC:H( n ) and the influence of the hot-wire filament temperature on the contact properties, we find that the electrical conductivity of µc-SiC:H( n ) can be increased by 12 orders of magnitude to a maximum of 0.9 S/cm due to an increased doping density and crystallite size. This optimization of the electrical conductivity leads to a strong decrease in contact resistivity. Applying this SiO 2 /µc-SiC:H( n ) transparent passivating front side contact to crystalline solar cells with an a-Si:H/c-Si heterojunction back contact we achieve a maximum power conversion efficiency of 21.6% and a short-circuit current density of 39.6 mA/cm 2 . All devices show superior quantum efficiency in the short wavelength region compared to the reference cells with a-Si:H/c-Si heterojunction front contacts. Furthermore, these transparent passivating contacts operate without any post processing treatments, e.g., forming gas annealing or high-temperature recrystallization.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 1
700 1 _ |a Zamchiy, Alexandr
|0 P:(DE-Juel1)179571
|b 2
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 3
700 1 _ |a Duan, Weiyuan
|0 P:(DE-Juel1)169946
|b 4
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 5
700 1 _ |a Li, Shenghao
|0 P:(DE-Juel1)174415
|b 6
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 7
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 8
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 9
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 10
773 _ _ |a 10.1109/JPHOTOV.2019.2947131
|0 PERI:(DE-600)2585714-9
|n 1
|p 46-53
|t IEEE journal of photovoltaics
|v 10
|y 2020
|x 2156-3381
856 4 _ |u https://juser.fz-juelich.de/record/865947/files/08889659.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/865947/files/08889659.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:865947
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165230
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179571
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)174415
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J PHOTOVOLT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21