%0 Journal Article %A Eilers-Rethwisch, M. %A Hildebrand, S. %A Evertz, M. %A Ibing, L. %A Dagger, T. %A Winter, M. %A Schappacher, F. M. %T Comparative study of Sn-doped Li[Ni0.6Mn0.2Co0.2-Sn ]O2 cathode active materials (x = 0-0.5) for lithium ion batteries regarding electrochemical performance and structural stability %J Journal of power sources %V 397 %@ 0378-7753 %C New York, NY [u.a.] %I Elsevier %M FZJ-2019-05227 %P 68 - 78 %D 2018 %X Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xSnx]O2 cathode active materials with x = 0–0.05 are synthesized via a co-precipitation synthesis route and the effect of doping content on the structural behavior and electrochemical performance are investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase (space group Rm) analyzed by X-ray diffraction (XRD). Electrochemical Li-metal/cathode cell studies exhibit that a Sn-content of 1%–2% is beneficial regarding specific discharge capacity and cycle life (≥20%). Detailed electrochemical investigations of Li-metal and lithium ion cells with cathodes consisting of LiNi0.6Mn0.2Co0.2O2 and LiNi0.6Mn0.2Co0.18Sn0.02O2 are conducted. Post mortem analyses by means of ICP-OES and TXRF show beneficial effects of the Sn-doping with regard to a lower transition metal dissolution and a higher available Li content in the cathode active material. The thermal analyses (TGA, DSC, ARC) show a stabilizing effect of Sn-doping, which results from a lower mass loss and less heat evolution of the charged cathode active materials at elevated temperatures. %F PUB:(DE-HGF)16 %9 Journal Article %U <Go to ISI:>//WOS:000445317900010 %R 10.1016/j.jpowsour.2018.06.072 %U https://juser.fz-juelich.de/record/865961