000865961 001__ 865961
000865961 005__ 20240712113130.0
000865961 0247_ $$2doi$$a10.1016/j.jpowsour.2018.06.072
000865961 0247_ $$2ISSN$$a0378-7753
000865961 0247_ $$2ISSN$$a1873-2755
000865961 0247_ $$2WOS$$aWOS:000445317900010
000865961 037__ $$aFZJ-2019-05227
000865961 082__ $$a620
000865961 1001_ $$0P:(DE-HGF)0$$aEilers-Rethwisch, M.$$b0
000865961 245__ $$aComparative study of Sn-doped Li[Ni0.6Mn0.2Co0.2-Sn ]O2 cathode active materials (x = 0-0.5) for lithium ion batteries regarding electrochemical performance and structural stability
000865961 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000865961 3367_ $$2DRIVER$$aarticle
000865961 3367_ $$2DataCite$$aOutput Types/Journal article
000865961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571919581_10927
000865961 3367_ $$2BibTeX$$aARTICLE
000865961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865961 3367_ $$00$$2EndNote$$aJournal Article
000865961 520__ $$aLayered Ni-rich Li[Ni0.6Mn0.2Co0.2-xSnx]O2 cathode active materials with x = 0–0.05 are synthesized via a co-precipitation synthesis route and the effect of doping content on the structural behavior and electrochemical performance are investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase (space group Rm) analyzed by X-ray diffraction (XRD). Electrochemical Li-metal/cathode cell studies exhibit that a Sn-content of 1%–2% is beneficial regarding specific discharge capacity and cycle life (≥20%). Detailed electrochemical investigations of Li-metal and lithium ion cells with cathodes consisting of LiNi0.6Mn0.2Co0.2O2 and LiNi0.6Mn0.2Co0.18Sn0.02O2 are conducted. Post mortem analyses by means of ICP-OES and TXRF show beneficial effects of the Sn-doping with regard to a lower transition metal dissolution and a higher available Li content in the cathode active material. The thermal analyses (TGA, DSC, ARC) show a stabilizing effect of Sn-doping, which results from a lower mass loss and less heat evolution of the charged cathode active materials at elevated temperatures.
000865961 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000865961 588__ $$aDataset connected to CrossRef
000865961 7001_ $$0P:(DE-HGF)0$$aHildebrand, S.$$b1
000865961 7001_ $$0P:(DE-HGF)0$$aEvertz, M.$$b2
000865961 7001_ $$0P:(DE-HGF)0$$aIbing, L.$$b3
000865961 7001_ $$0P:(DE-HGF)0$$aDagger, T.$$b4
000865961 7001_ $$0P:(DE-Juel1)166130$$aWinter, M.$$b5$$eCorresponding author$$ufzj
000865961 7001_ $$00000-0002-3743-8837$$aSchappacher, F. M.$$b6$$eCorresponding author
000865961 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.06.072$$gVol. 397, p. 68 - 78$$p68 - 78$$tJournal of power sources$$v397$$x0378-7753$$y2018
000865961 8564_ $$uhttps://juser.fz-juelich.de/record/865961/files/1-s2.0-S0378775318306761-main.pdf$$yRestricted
000865961 8564_ $$uhttps://juser.fz-juelich.de/record/865961/files/1-s2.0-S0378775318306761-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865961 909CO $$ooai:juser.fz-juelich.de:865961$$pVDB
000865961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000865961 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000865961 9141_ $$y2019
000865961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000865961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865961 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865961 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865961 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865961 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865961 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865961 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865961 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865961 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865961 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000865961 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000865961 980__ $$ajournal
000865961 980__ $$aVDB
000865961 980__ $$aI:(DE-Juel1)IEK-12-20141217
000865961 980__ $$aUNRESTRICTED
000865961 981__ $$aI:(DE-Juel1)IMD-4-20141217