000865962 001__ 865962
000865962 005__ 20240712113123.0
000865962 0247_ $$2doi$$a10.3762/bjnano.9.223
000865962 0247_ $$2Handle$$a2128/23151
000865962 0247_ $$2pmid$$apmid:30254833
000865962 0247_ $$2WOS$$aWOS:000443837000001
000865962 037__ $$aFZJ-2019-05228
000865962 082__ $$a620
000865962 1001_ $$0P:(DE-HGF)0$$aRuttert, Mirco$$b0
000865962 245__ $$aHydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells
000865962 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2018
000865962 3367_ $$2DRIVER$$aarticle
000865962 3367_ $$2DataCite$$aOutput Types/Journal article
000865962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571919072_10925
000865962 3367_ $$2BibTeX$$aARTICLE
000865962 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865962 3367_ $$00$$2EndNote$$aJournal Article
000865962 520__ $$aIn this work, silicon/carbon composites are synthesized by forming an amorphous carbon matrix around silicon nanoparticles (Si-NPs) in a hydrothermal process. The intention of this material design is to combine the beneficial properties of carbon and Si, i.e., an improved specific/volumetric capacity and capacity retention compared to the single materials when applied as a negative electrode in lithium-ion batteries (LIBs). This work focuses on the influence of the Si content (up to 20 wt %) on the electrochemical performance, on the morphology and structure of the composite materials, as well as the resilience of the hydrothermal carbon against the volumetric changes of Si, in order to examine the opportunities and limitations of the applied matrix approach. Compared to a physical mixture of Si-NPs and the pure carbon matrix, the synthesized composites show a strong improvement in long-term cycling performance (capacity retention after 103 cycles: ≈55% (20 wt % Si composite) and ≈75% (10 wt % Si composite)), indicating that a homogeneous embedding of Si into the amorphous carbon matrix has a highly beneficial effect. The most promising Si/C composite is also studied in a LIB full cell vs a NMC-111 cathode; such a configuration is very seldom reported in the literature. More specifically, the influence of electrochemical prelithiation on the cycling performance in this full cell set-up is studied and compared to non-prelithiated full cells. While prelithiation is able to remarkably enhance the initial capacity of the full cell by ≈18 mAh g−1, this effect diminishes with continued cycling and only a slightly enhanced capacity of ≈5 mAh g−1 is maintained after 150 cycles.
000865962 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000865962 588__ $$aDataset connected to CrossRef
000865962 7001_ $$0P:(DE-HGF)0$$aHoltstiege, Florian$$b1
000865962 7001_ $$0P:(DE-HGF)0$$aHüsker, Jessica$$b2
000865962 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b3
000865962 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author
000865962 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b5
000865962 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.9.223$$gVol. 9, p. 2381 - 2395$$p2381 - 2395$$tBeilstein journal of nanotechnology$$v9$$x2190-4286$$y2018
000865962 8564_ $$uhttps://juser.fz-juelich.de/record/865962/files/2190-4286-9-223.pdf$$yOpenAccess
000865962 8564_ $$uhttps://juser.fz-juelich.de/record/865962/files/2190-4286-9-223.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865962 909CO $$ooai:juser.fz-juelich.de:865962$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000865962 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000865962 9141_ $$y2019
000865962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865962 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865962 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2017
000865962 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865962 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865962 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865962 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865962 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865962 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000865962 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865962 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865962 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000865962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865962 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000865962 9801_ $$aFullTexts
000865962 980__ $$ajournal
000865962 980__ $$aVDB
000865962 980__ $$aUNRESTRICTED
000865962 980__ $$aI:(DE-Juel1)IEK-12-20141217
000865962 981__ $$aI:(DE-Juel1)IMD-4-20141217