Home > Publications database > Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-M]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials > print |
001 | 865963 | ||
005 | 20240712113123.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2018.02.080 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a WOS:000430899800013 |2 WOS |
037 | _ | _ | |a FZJ-2019-05229 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Eilers-Rethwisch, Matthias |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-M]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials |
260 | _ | _ | |a New York, NY [u.a.] |c 2018 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1571920044_10926 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xMx]O2 cathode materials (x = 0, 0.05; M = Al, Fe, Sn) are synthesized via a co-precipitation synthesis route and the effect of dopants on the structure and electrochemical performance is investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase investigated by X-ray diffraction (XRD). Undoped LiNi0.6Mn0.2Co0.2O2 exhibits a discharge capacity of 170 mAh g−1 in Li-metal 2032 coin-type cells. Doped materials reach lower capacities between 145 mAh g−1 for Al and 160 mAh g−1 for Sn. However, all doped materials prolong the cycle life by up to 20%. Changes of the lattice parameter before and after delithiation yield information about structural stability. A smaller repulsion of the transition metal layer during delithiation in the Sn-doped material leads to a smaller expansion of the unit cell, which results in enhanced structural stability of the material. The improved structural stability of Sn-doped NMC cathode active material is proven by thermal investigations with the help of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Schappacher, Falko Mark |0 0000-0002-3743-8837 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jpowsour.2018.02.080 |g Vol. 387, p. 101 - 107 |0 PERI:(DE-600)1491915-1 |p 101 - 107 |t Journal of power sources |v 387 |y 2018 |x 0378-7753 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/865963/files/1-s2.0-S0378775318301988-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/865963/files/1-s2.0-S0378775318301988-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:865963 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|