000865964 001__ 865964
000865964 005__ 20240712113123.0
000865964 0247_ $$2doi$$a10.1016/j.jpowsour.2017.11.010
000865964 0247_ $$2ISSN$$a0378-7753
000865964 0247_ $$2ISSN$$a1873-2755
000865964 0247_ $$2WOS$$aWOS:000418392000021
000865964 037__ $$aFZJ-2019-05230
000865964 082__ $$a620
000865964 1001_ $$0P:(DE-HGF)0$$aBeltrop, Kolja$$b0
000865964 245__ $$aEnabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries
000865964 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000865964 3367_ $$2DRIVER$$aarticle
000865964 3367_ $$2DataCite$$aOutput Types/Journal article
000865964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571918962_10925
000865964 3367_ $$2BibTeX$$aARTICLE
000865964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865964 3367_ $$00$$2EndNote$$aJournal Article
000865964 520__ $$aIn this work, we present a comprehensive study on the effect of adding different conductive salt additives including LiPF6, LiBF4 and LiDFOB, as well as the fluorinated solvent additive methyl difluoroacetate (MDFA) to a bis(fluorosulfonyl)imide (FSI)-based ionic liquid (IL) electrolyte, i.e. Pyr14FSI/LiFSI, to protect the Al current collector (ACC) from anodic dissolution and, thus, enable reversible charge/discharge cycling in a high performance dual-ion cell. Chronocoulometry and scanning electron microscopy measurements were conducted to evaluate the specific ACC passivation ability of each electrolyte. Furthermore, the influence of these additives on anion intercalation behavior into the graphite positive electrode with special emphasis on the Coulombic efficiency (CE), reversible capacity, as well as capacity retention is presented. Overall, we can show that the addition of small amounts of LiPF6, LiBF4 and MDFA (0.5 wt%) into the FSI-based IL electrolyte significantly increases the overall cell performance, whereas LiDFOB as electrolyte additive deteriorates the dual-ion cell performance. In addition, an excellent cycling performance for 1000 cycles is obtained for the Pyr14FSI electrolyte having 5 wt% LiPF6, displaying an average reversible capacity of 40 mAh g−1, a CE exceeding 98% and a capacity retention of 91%, which has not been reported so far.
000865964 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000865964 588__ $$aDataset connected to CrossRef
000865964 7001_ $$0P:(DE-HGF)0$$aQi, Xin$$b1
000865964 7001_ $$0P:(DE-HGF)0$$aHering, Tobias$$b2
000865964 7001_ $$0P:(DE-HGF)0$$aRöser, Stephan$$b3
000865964 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author$$ufzj
000865964 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b5$$eCorresponding author
000865964 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.11.010$$gVol. 373, p. 193 - 202$$p193 - 202$$tJournal of power sources$$v373$$x0378-7753$$y2018
000865964 8564_ $$uhttps://juser.fz-juelich.de/record/865964/files/1-s2.0-S0378775317314696-main.pdf$$yRestricted
000865964 8564_ $$uhttps://juser.fz-juelich.de/record/865964/files/1-s2.0-S0378775317314696-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000865964 909CO $$ooai:juser.fz-juelich.de:865964$$pVDB
000865964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000865964 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000865964 9141_ $$y2019
000865964 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000865964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865964 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000865964 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865964 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865964 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865964 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865964 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865964 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865964 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000865964 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000865964 980__ $$ajournal
000865964 980__ $$aVDB
000865964 980__ $$aI:(DE-Juel1)IEK-12-20141217
000865964 980__ $$aUNRESTRICTED
000865964 981__ $$aI:(DE-Juel1)IMD-4-20141217