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Abstract: Land surface temperature (LST) is a fundamental parameter within the system of the Earth’s
surface and atmosphere, which can be used to describe the inherent physical processes of energy and
water exchange. The need for LST has been increasingly recognised in agriculture, as it affects the
growth phases of crops and crop yields. However, challenges in overcoming the large discrepancies
between the retrieved LST and ground truth data still exist. Precise LST measurement depends mainly
on accurately deriving the surface emissivity, which is very dynamic due to changing states of land
cover and plant development. In this study, we present an LST retrieval algorithm for the combined
use of multispectral optical and thermal UAV images, which has been optimised for operational
applications in agriculture to map the heterogeneous and diverse agricultural crop systems of a
research campus in Germany (April 2018). We constrain the emissivity using certain NDVI thresholds
to distinguish different land surface types. The algorithm includes atmospheric corrections and
environmental thermal emissions to minimise the uncertainties. In the analysis, we emphasise that
the omission of crucial meteorological parameters and inaccurately determined emissivities can lead
to a considerably underestimated LST; however, if the emissivity is underestimated, the LST can be
overestimated. The retrieved LST is validated by reference temperatures from nearby ponds and
weather stations. The validation of the thermal measurements indicates a mean absolute error of
about 0.5 K. The novelty of the dual sensor system is that it simultaneously captures highly spatially
resolved optical and thermal images, in order to construct the precise LST ortho-mosaics required to
monitor plant diseases and drought stress and validate airborne and satellite data.
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1. Introduction

Land surface temperature (LST) is the primary driving force of the exchange between turbulent
heat flux and long-wave infrared (LWIR) radiation (8-15 pm) at the interface of the Earth’s surface and
atmosphere. Therefore, the LST is a key parameter for the physical description of the surface energy
and water balance processes at the local to global scale [1,2]. The potential of this crucial parameter
has been repeatedly demonstrated in various thermal infrared-based studies and applications, such as
evapotranspiration [3,4], hydrological modelling [5], vegetation monitoring [6], “‘urban heat island and
urban development” [7-9], climate change and weather conditions [1,10], agriculture [3,11], and the
monitoring of land use changes in wetlands [12]. In agricultural applications, precision farming has
increasingly required thermal remote sensing techniques to detect water-stressed crops [3,13,14], plant
diseases [13,15], and for irrigation management [13,14].

However, LST significantly varies, both temporally and spatially (about 10K), during the
daytime depending on the present weather conditions and the solar irradiation that warms the
land surface [1]. Surfaces with high spectral differentiated emissivities, such as bare soil surfaces and
rocks (inhomogeneous heating) and sealed areas (‘urban heat islands’) have shown particularly large
surface temperature amplitudes in the diurnal cycle [1,16,17]. Water-stressed vegetation also depicts
this phenomenon, due to the rapidly changing transpiration rate resulting in a strongly fluctuating
plant canopy temperature [18]. Therefore, high repetition rates (depending on water supply and
weather conditions) or even continuous temperature measurements are required to account for the
detailed and accurate thermal mapping of water-stressed crops or in irrigation management.

Satellite-based LST retrieval methods have been reviewed and compared in several case
studies [1,19,20], but depending on the retrieval algorithm, large discrepancies between the retrieved
LST and ground truth data can occur. Even the same sensor, such as a high precision satellite instrument
(i-e., the Spinning Enhanced Visible and Infrared Imager—SEVIRI—aboard Meteosat-9) using different
LST algorithms has featured discrepancies of about 6 K [21]. The reason for this is often an inaccurate
or even erroneously estimated surface emissivity [1], which has a great impact on the accuracy of
LST [19,20]. The lower the emissivity, the higher the impact of environmental thermal emissions
on the LWIR radiation (Section 2.1), which needs to be considered to avoid errors in LST retrieval
(Section 2.1.3). Moreover, the results also depend on properly performing atmospheric corrections
because of changing weather conditions: A rise in relative humidity leads to decreasing transmittance,
which attenuates the thermal signal’s path through the atmosphere [1]. In terms of the great land
surface heterogeneity, the central issue is an incorrectly estimated emissivity. Land surface emissivity
(LSE) is highly dynamic, particularly in the mid and high latitudes with seasonally changing vegetation
cover of miscellaneous landscape types, such as mixed forests, grasslands, wetlands, and in agricultural
areas with short-term land use and land cover (LULC) changes [1,10,12,22]. This makes the precise
retrieval of LST difficult, as LSE depends on changes in both natural and man-made land surface
properties. Hence, an accurate and relatively timely LSE estimation is necessary for the retrieval of
correct LST results.

In addition, a scale effect, due to different pixel resolutions when using the same LST algorithm
for observations with different spatial scales at different altitudes, must be taken into account. For
instance, a pixel might only contain a part of the plant at the leaf level, whereas the same pixel scene
might represent a mixture of multiple information of bare soil and overlapping leaves at the canopy
level [1,10,17]. Resolution cells of mixed pixels increase the uncertainty if they are not taken into
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account. With respect to airborne and satellite sensed data, this influencing factor becomes more
important, due to the lower spatial resolution at regional scales [1,17]. Therefore, high-contrast and
highly spatially resolved thermal infrared mapping is urgently needed (e.g., by airborne campaigns)
to investigate the mentioned scale effects and to overcome the large discrepancies observed between
remotely sensed data and field measurements.

The use of thermal and multispectral optical sensors on board an unmanned aerial vehicle (UAV)
has started with very simple configurations (e.g., [23]). Although some parameters in UAV-based LST
retrievals are often simplified due to low flight altitudes (e.g., atmospheric transmittance). Ref. [24]
performed a land use classification and assigned specific emissivity values from reviewed literature to
each class in order to derive the actual temperature of different target surfaces. Sagan et al. [25] used
environmental parameters measured at nearby ground stations to correct air temperature, humidity,
and emissivity using linear calibration equations. Similarly, Si et al. [26] determined a single emissivity
value that was applied to the entire study area. They measured the emissivity at a certain temperature
and integrated it with the spectral response function of the thermal imager [26]. Malbéteau et al. [27]
estimated emissivity in terms of vegetation cover, expressed by vegetation index values [17,19]. Some
studies, however, do not take emissivity into account and therefore provide results that should be
viewed as qualitative rather than quantitative [14,28]. To overcome the challenges mentioned, we have
introduced a dual sensor system that was combined with a thermal imager that had a much higher
sensor resolution than those available off-the-shelf. A multispectral optical sensor was used to provide
vegetation indices to estimate emissivities, whereas, thermal images were captured almost without
distortion due to the slow flight speed of the fixed-wing glider.

For LWIR applications, universal emissivity (€) for dense and healthy vegetation surfaces of
€ = 0.985 [29] has typically been assumed, although the emissivities of different landscape types,
such as forests, grasslands, and agricultural areas, are diverse [17,30,31]. Additionally, the vegetation
density has a direct impact on LSE; for instance, when there is a soil background within a resolution
cell. Hence, this assumption is valid only under certain conditions. The emissivity also depends on the
state of the plant, and can significantly decrease (e.g., for dry vegetation) [31]. Generally, an error in €
of 1% corresponds to a value of 0.75 K [32].

In the thermal spectrum, fully vegetated canopies show LAMBERTIAN behaviour, where angular
dependence on emissivity is negligible [33]. Accordingly, the thermal anisotropy can be disregarded for
high emissivities [33,34]. However, the prerequisite for this is that the radiative transfer model has been
applied (Section 2.1). Nevertheless, thermal measurements are affected by water vapour absorption.
Therefore, an atmospheric correction is reasonable to consider the water vapour. In particular, at higher
relative humidities (>50%), it is expedient to determine tropospheric transmittance, even for a flight
altitude (sensor-target distance) of 50 meters [35]. Thus, we performed an atmospheric correction in
this study.

In summary, if an incorrect specific emissivity is assumed and environmental thermal emissions
(background temperature) and tropospheric transmittance are disregarded, a potential error of about 9
K can arise (Section 3). Eventually, retrieval of the precise LST (or the kinetic temperature) is necessary;
for instance, to assess evapotranspiration or to calculate agricultural indices such as the Crop Water
Stress Index (CWSI). This is an indicator for the water supply status of plants, which is required in
precision farming (e.g., for irrigation management) [36]. An accurate estimation of LSE to generate
precise LST maps remains a key prerequisite.

Thermal remote sensing provides complete spatially averaged and highly temporally resolved
information about specific radiation characteristics to describe the intricacies of the LST, rather than
point values by field measurements over large areas [1]. Hence, we have investigated various
algorithms using an LWIR thermal camera, as well as a multispectral sensor covering the visible
and near infrared (VNIR) domain, to identify the method with the highest potential in terms of
retrieving LST. Multispectral VNIR data were used to derive the Normalised Difference Vegetation
Index (NDVI) [37]. We chose predefined NDVI thresholds, where we constrained the emissivity
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per pixel to distinguish between bare soil surfaces, dense plant canopies, and mixed surface types
(Section 2.1.2).

The present research is focused on agricultural areas, which entail highly dynamic LSE values,
due to the varying phenological statuses of the crops. Besides the natural ripening stages, this is mainly
caused by external impacts, such as water stress, plant diseases, or frost damage. The objective of this
study is to retrieve precise LST, taking into account the highly variable LSE derived by using an NDVI
threshold approach, as well as the atmospheric impacts. For this purpose, we equipped a UAV with
a multispectral sensor and a thermal camera to simultaneously capture VNIR and LWIR imagery of
the entire study site. Based on the acquired VNIR and LWIR images, we generated corresponding
ortho-mosaics to retrieve and quantify the LST values. Finally, we have developed a standardised
LST retrieval algorithm which is optimised for fixed-wing UAV applications, in order to enable
semi-supervised thermal mapping in agricultural areas. The study site of the UAV campaigns (April
2018) was an agricultural research field in Rheinbach (North Rhine-Westphalia), which is affiliated
with the Agricultural Faculty of Bonn University in Germany.

2. Methodology of the LST Retrieval Algorithm Using UAV-Based Multispectral Data

The following sections describe the UAV-based LST retrieval methodology in detail. The various
processing steps required to retrieve precise LST values are illustrated in Figure 1:
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Figure 1. Flowchart of the proposed Unmanned Aerial Vehicle (UAV)-based method to retrieve
precise Land Surface Temperature (LST): (i) Visible and near infrared (VNIR) and long-wave infrared
(LWIR) data acquisition; (ii) Reference measurements for VNIR and LWIR data during the flights;
(iii) Preprocessing of the acquired data; (iv) Atmospheric correction for the thermal domain; (v)
Ortho-mosaic generation; (vi) Co-registration, resampling and layer stacking of the VNIR and
brightness temperature (BT) maps; (vii) Computation of the Land Surface Emissivity (LSE) and
LST maps.

For this approach, we developed a dual sensor system to simultaneously acquire multispectral
VNIR and LWIR thermal imagery from a flight altitude of 77 meters, resulting in a spatial resolution
of 7 cm per pixel (px) and 10 cm/px, respectively (Figure 1i). Different reflectance panels were
captured during the flights for subsequent calibrations of the VNIR and LWIR data. The background
temperature was incorporated by using a panel of crumpled aluminium foil and quantified with
a pyrometer [29], which was sensitive at similar wavelengths as the thermal camera (Appendix
A.1). Due to its high specific heat capacity, the water temperature of a nearby pond was used as a
reference for validation of the thermal observations (Figure 1ii). The advantage of a water surface
reference is its quite stable and homogeneous temperature distribution during the recording time and
its constant emissivity (Section 2.2.3). VNIR and LWIR digital numbers (DN) were then converted
into reflectance and brightness temperature (BT), respectively. Further preprocessing steps that we
performed on the VNIR data included reflectance calibration and band sensitivity normalisation. LWIR
images were removed, regarding their contrast applying a 2D FOURIER transform (Appendix A.2);
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afterwards, we conducted drift compensation and non-uniformity correction (Figure 1iii). Subsequent
atmospheric correction for the thermal data was based on the radiative transfer model (Figure 1iv).
Before constructing the ortho-mosaic, additional calibration of the lens parameters to rectify the LWIR
imagery was necessary (Appendix A.2). For both data sets, the same tools (with adapted parameters)
to generate the ortho-mosaics were chosen: aligning imagery, then dense cloud and mesh building
(Appendix A.2). Then, we calculated the NDVI to constrain the LSE per pixel, based on predefined
NDVI thresholds. Co-registration and resampling of the VNIR and BT maps was needed for pixelwise
calculation of the stacked layer (Figure 1vi). Finally, we computed the LSE, based on the proposed
methods, and retrieved the LST, considering the specific emissivity, transmittance, and background
temperature (Figure 1vii).

2.1. Lst Retrieval Methodology

Based on the radiative transfer model (RTM), the radiation path through the troposphere can be
written as [17,29]:

Lsens = (Lsurf + Lrefl) T+ Latm, (1)

where Lgeys is the at-sensor radiance, Ly, ¢ the surface radiance attenuated by the atmosphere, and
Latm the upwelling radiance emitted by the atmosphere. L,.f; describes the downwelling radiance
emitted by the atmosphere (e.g., by water vapour re-emission), which is reflected at the surface (¢ — 1)
and attenuated by the atmosphere. The atmospheric transmittance (7) is dimensionless (defined in
the range of 0-1) and for the radiances, the unit W m 2 sr!isused. As Leens depends on both the
wavelength and sensor-specific properties, the inverse PLANCK function must be used to convert
from the raw at-sensor radiance (Ls.ys) into the at-sensor brightness temperature (BTsens). Planck’s law
(1900) describes the spectral density of electromagnetic radiation emitted by a blackbody at a given
temperature [1]. However, the LWIR detector does not cover the entire thermal wavelength range.
Thus, the camera manufacturer has used a modified PLANCK function [38], which is based on the
sensor-specific spectral response curve and laboratory-derived PLANCK constants (Appendix A.1).
BTsens is automatically calculated by the thermal camera software, with parameters of transmittance
and emissivity set to one.

Due to the reflections of natural surfaces (¢ < 1) in the thermal domain, the radiometric
temperature or brightness temperature sensed by the sensor is always lower than the equivalent
measured absolute (kinetic) temperature (T). Radiant and kinetic temperatures are two different
quantitative terms in thermodynamics [34,39,40], which can be equal in no way, and simply provide
the best approximations to describe the temperatures [41]. The thermodynamic relationship for e < 1
can be described, by the STEFAN-BOLTZMANN law (1884), as [34,40,42]:

M:e-U-T4(:>T=\4/£, )
€0

where M is the irradiance (W m~2), € is the emissivity (ranging from 0-1; dimensionless), ¢ is the
STEFAN-BOLTZMANN constant (5.67 x 1078 W m~2 K~*), and T is the absolute temperature (K).

According to [29,43], based on RTM (Equation (1)) and using the STEFAN—-BOLTZMANN law
(Equation (2)), the LST retrieval (Equation (3)) can be written as (Appendix A.3):

JBTE,—(1—¢€)-T-Th —(1—7)-T%
LST := Tsurf(ef T) = \/ sens bkg azr/ ®)

€T

where Ty, f(e, T) is the retrieved surface temperature, BTs,s the at-sensor brightness temperature, Tykg
the background temperature, and T,;, the air temperature (K, respectively); and emissivity (€) and
transmittance (7) range from 0-1 (dimensionless). From Equation (Equation (3)), it is obvious that an
atmospheric correction (Section 2.1.1) considering T, Tyj;, Tykg, and the corresponding emissivity are
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needed to retrieve a precise and correct absolute temperature (T) at the surface. At altitudes above
100 meters, we recommend considering the (dry) adiabatic lapse rate to correct the air temperature
to the appropriate UAV height. The background temperature was incorporated using a panel of
crumpled aluminium foil (Appendix A.1). Equation (3) has been described by [43] and was used in an
analogous way in [29], where we included the parameter T to make the use of an additional commercial
software for atmospheric correction unnecessary. The standard software (e.g., FLIR Thermal Studio
Pro, FLIR Systems, Inc., Wilsonville, OR, USA; IRBIS 3 professional, InfraTec GmbH, Infrarotsensorik
und Messtechnik, Dresden, Germay) uses Equations (4) and (5) (Section 2.1.1) to perform atmospheric
correction. To validate the retrieved LST (Section 3), we used the water temperature (as measured by
thermocouples) of a nearby pond as relative constant temperature reference (Section 2.2.3). In order
to account for small spatial temperature variation, we measured the air temperature at two different
locations. Finally, we used the estimated emissivity (€) to retrieve the precise LST (Section 2.1.2), as
proposed by [17,44].

2.1.1. Impacts of Atmospheric Conditions on Thermal Measurements

In this subsection, we address several complex influencing factors that can affect thermal
measurements during data acquisition: Infrared thermography must be executed in thermal
equilibrium to obtain physically correct data. However, changing the ambient conditions of the
camera (FLIR Tau 2 640), can affect the thermal measurements and reduce the radiometric accuracy by
up to 5 °C [45], because uncooled thermal sensors (without thermo-electric cooler) cannot maintain
a stabilised constant temperature of the microbolometer (focal-plane array, FPA). The accuracy of the
measured BTs.s is dependent on the internal FPA (detector) temperature and housing temperature,
as well as external effects caused by the UAV system itself. These parameters fluctuate throughout a
flight (e.g., from shaded to unshaded conditions) and should, therefore, be taken into account [46]. The
issue of fluctuating detector and housing temperatures has been solved by the ‘Advanced Radiometry”
tool (FLIR) using a built-in shutter to calibrate itself. Before and after changing temperature events, flat
field correction (FFC) is performed by submitting a uniform temperature (a flat field) to the detector.
During the FFC process, the internal shutter of the camera is closed and quickly reopened to estimate
the shutter temperature. Therefore, each FFC event was detected during the data acquisition and
tagged in the recordings. Then, the ThermoViewer 2.1.6 software (TeAx Technology GmbH, Wilnsdorf,
Germany) was used to perform ‘Drift compensation’ (for temperature fluctuations) with appropriate
correction coefficients. Drift of the housing temperature was also compensated by permanent cooling
with an adjacently mounted fan. However, sensory effects can also lead to non-uniformity in thermal
imagery, such as ‘cold corners’ (vignetting). The same software, hence, was used for a motion-based
‘Non-Uniformity Correction (NUC)’ filter, which distinguished constant errors by shifts within the
frames.

Furthermore, thermal measurements are affected by water vapour absorption. Therefore,
atmospheric correction in the thermal spectrum was performed to consider tropospheric conditions
(Section 1). The required parameters were obtained from the in situ weather station and a microclimatic
station in the field (Section 2.2.3). Initially, the present water vapour content (WVC) was computed
using parameters such as the air temperature and relative humidity:

w = w% -exp (hl T3 Ay T2, + hs - Ty + h4) , 4)

where w is the water vapour content (mm), w% is the relative humidity (ranging from 0-1;
dimensionless), T,;, is the air temperature (°C), and hy, hy, h3, and hy are specific parameters for
a temperature range of —40 to +120 °C in the LWIR domain (h; = 6.8455 x 1077, hy = —2.7816 x
1074, h3 = 6.939 x 1072, and hy = 1.5587) [43,47]. Subsequently, the transmittance was estimated using
parameters such as the flight altitude (distance) and WVC:
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T = Katm - exp {—\/E (a1 + ,81\/5)} + (1 — Katm) - exp {—\/H (22 +,32\/5)} , (5)

where T is the transmittance (0-1; dimensionless), d is the distance (m), along with specific parameters
such as the scaling factor of atmospheric damping (K1, = 1.9), the attenuation of the atmosphere
without water vapour (¢1 = 0.0066, ap = 0.0126), and the attenuation of water vapour (81 = —0.0023, B,
= —0.0067) [43,47]. Atmospheric damping is caused by absorption by gaseous components and the
turbidity of the troposphere, which decrease the amplitude of the electromagnetic radiation [48]. From
this equation, it is obvious that the transmittance depends mainly on the distance and the WVC.

2.1.2. Lse Estimation Based on NDVI Thresholds

Remotely sensed spectral vegetation indices, such as the NDVI, allow a more representative
spatial estimation of the emissivity than point measurements [30,37]:

NIR — R
NIR+ R’

where NIR and R are the reflectances in the near-infrared and red spectra, respectively (—1...+1).

NDVI = (6)

Moreover, NDV thresholds provide a reasonable way to differentiate the emissivities of various land
surface types. This is particularly necessary for dynamic land surfaces, such as seasonally varying
natural vegetation and agricultural areas.

The first predictions of LSE from NDVI values were made in [30,44]. For estimating the emissivity
determined by NDVI thresholds, the vegetation cover method was initially proposed in [49,50]. Using
information of the fractional vegetation cover or vegetation proportion (P,), along with knowledge
of the emissivities of full vegetation and bare soil surfaces, this method produces effective LSE. The
NDVI threshold method (NDVI-THM), using certain NDVI thresholds, was first introduced in [51],
where it was applied to Advanced Very High Resolution Radiometer (AVHRR) satellite data. For
applications in agriculture, we identified this method as the most suitable, as it classifies the emissivity
into three different surface types: bare soil (NDVI < NDV ), full vegetation (NDVI > NDV Iq),
and mixed areas (composed of both attributes). Using information from P, and NDVTI histograms to
identify the convenient NDVI thresholds is acutely beneficial: No accurate atmospheric correction is
essential, because corrected and uncorrected NDVI are similar [17,52]. For known emissivities of full
vegetation and bare soil surfaces, P, (Equation (7)) can be obtained, according to [17,52], by:

2
PF( NDVI— NDVI,; ) ’ -

NDVIpeg — NDV Iy

where NDV[,,;; and NDV I,e¢ are the NDVI of bare soil and full vegetation, respectively. The P, values
can, then, be used to compute the emissivity of mixed pixels (¢€):

€:€veg‘Pv+€soil'(1_Pv)+cf 8

where €4¢¢ (=0.988) and €, (=0.935) are the mean emissivities (in the LWIR spectrum) of dense plant
canopy [30,31] and bare soil (of loamy to silty texture) [31,53], C is the term of cavity effect due to
surface roughness (C =4-de - P, - (1 — Py)), and de is a revised parameter (de ~ 0.01). For flat areas

(C E 0), the formula (Equation (8)) simplifies to:

ezeveg'Pv‘Fesoil'(l_Pv)‘ )

Finally, we constrain the emissivity per pixel based on certain NDVI thresholds to distinguish
between three different surface types, as proposed by [17]. The following NDVI thresholds were used
to reclassify the LSE (€), based on the emissivities of bare soil, full vegetation, and mixed states:
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e bare soil: NDVI < NDVI,; = NDVI < 0.157 — €4, =0.935
e dense canopy: NDVI > NDV Ipeq = NDVI > 0.905 — €peg =0.988
e mixed pixels:  NDVI,; < NDVI < NDVlyeg — € (Equation (9)),

where €, is maintained as the global emissivity of dense canopies [30,31] and €, is assumed for
loamy to silty (moisture) soil [31,53]. For loamy sand soil, we suggest a lower emissivity of 0.914,
as proposed by [30]. A NDVI,;; value of 0.157 (standard deviation, SD = 0.227) was derived by the
means of four samples from the rapeseed field studied. A NDV I, value of 0.905 (SD = 0.111) was
established by the means of four rape plots (healthy varieties). However, for different crops (i.e., corn,
wheat, barley, and rape), we recommend a global NDV I, value of 0.814 (as observed in summer
2018); or around 0.8, as proposed by [17]. Nevertheless, the NDVI thresholds for soil and vegetation
need to be recalculated before using NDVI-THM to estimate the LSE.

For open canopies, ref. [30] have postulated a logarithmic relationship (¢/) between the mean
emissivity and the mean NDVI, which fits best to NDVI values between 0.157 and 0.727 (Equation

(10)):

¢ =a+b-In(NDVI), (10)

with a = 1.0010 and b = 0.047 (level of significance: 0.99). To analyse the results of the emissivity
approach from information derived from P, (Equation (9)), we used the logarithmic relationship
(Equation (10)). Finally, we performed a comparison of both approaches to determine their selectivities,
as well as to study their benefits for applications in agriculture (Section 3).

2.1.3. Consequences of Omitting Essential Parameters
Subsequent assumptions were made to emphasise the importance of considering essential
parameters, such as transmittance, air temperature, emissivity, and background temperature. In

our first assumption, we set the emissivity to one (e E 1), which simplifies the formula (Equation (3))
to:

BT%
LST(7) := Tours(T) = A\l/ =

In our second assumption, which presupposes a completely transmissive atmosphere, we set the

10T
=7 Top (11)

T

!
transmittance to one (7 = 1). This simplifies the same initial formula to:

BTins — (1—€) - Ty,

- (12)

LST(e) := surf(e) = Q/

Based on these limiting assumptions (Equations (11) and (12)), we made the following two case
distinctions: Case i: LST(7) includes the atmospheric transmittance, but does not take into account
the emissivity or background temperature (Equation (11)); and case ii: LST(e) includes the emissivity
and background temperature, but omits the transmittance (Equation (12)). In summary, we have
highlighted the potential implications of omitting these parameters, which should be considered in
order to minimise the uncertainties in retrieving precise LST values. The deviations between the
uncorrected BTse,s and LST(7) or LST(€) are shown in the results (Section 3).

2.2. Study Site and Data Sets

2.2.1. Agricultural Research Campus

The study site of the UAV campaigns was the northern part of agricultural research fields of
‘Campus Klein-Altendorf” (CKA) in Rheinbach (North Rhine-Westphalia), which is affiliated with the
Agricultural Faculty of Bonn University, Germany (Figure 2). The total agricultural area of CKA was
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about 181 ha, mainly cultivated with barley, wheat, corn, and sugar beet; moreover, rapeseed, potatoes
and renewable resources (e.g., Miscanthus) were also cultivated. CKA had two weather stations that
continuously recorded meteorological data, such as air temperature and humidity, as well as the
surface temperature in the northern and southern part of the campus. In the fields, air temperature
and humidity were measured continuously by data loggers (Section 2.2.3). This study was focused
on the rapeseed field within the ‘Common Experiment’ (Figure 2) during the springtime in 2018.
The maintenance of crop rotation and working on homogeneous fields was part of this experiment.
The rapeseed field experiment consisted of 63 plots (and border plots), each with dimensions of 3 x
6 meters and planted with 10 different genotypes with a minimal repetition of 6 plots (the present
genotypes were Alaska, Pirola, DH5, Markus, Expert, Olympiade, Wotan, Major, Grof8 Liisewitzer, and
Sensation NZ).

E
SUE® Study site

Figure 2. VNIR-generated colour infrared (CIR) map (NIR-red-green composite) of the rapeseed
experiment (white border) as part of the Common Experiment (yellow border) with bare soil patches,
at recording time (11 April 2018, 13:42 CET), prepared for maize and summer wheat experiments.
The Common Experiment follows crop rotation with homogeneously planted crops; in this image,
summer barley (dotted yellow margin) is planted every two years. Furthermore, south of the Common
Experiment, sugar beet and, to the north, barley were grown, according to standard agricultural
practice. A data logger was placed within the rapeseed field (yellow x; 50.6237N, 6.9873E). The spatial
resolution of the CIR map is 7 cm per pixel.

2.2.2. Fixed-Wing Uav System

A fixed-wing UAV (Figure 3) was used to map the heterogeneous and diverse agricultural
cropping systems and to efficiently cover the large fields of the campus.
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connection to
the autopilot

Figure 3. The fixed-wing UAV used during our thermal campaigns (left). The sensor platform of the
UAV consists of a dual sensor system with a multispectral VNIR sensor, including an irradiance sensing
element and a thermal camera (right). The LWIR camera is connected to the autopilot of the UAV to
record GPS data and heading information, stored as metadata.

The special features of the UAV are the novel sensor platform (Figure 3) and a slow flight speed
over ground (Appendix A.4), which is particularly important for thermal mapping, in order to avoid
blurry images. The UAV was mounted with a dual sensor system, consisting of both a multispectral
VNIR sensor (Parrot Sequoia; Parrot Drones SAS, Paris, France) and a LWIR thermal camera (FLIR Tau
2 640), attached to a ThermalCapture 2.0 module (TeAx Technology) to simultaneously capture the images
(Table 1). The accuracy of the thermal camera (dT;;;) under stable ambient conditions was dTesm =
£0.50 °C, which has been laboratory-confirmed by [45]. However, in changing ambient conditions, the
radiometric accuracy can be reduced by up to +5.0 °C [45].

Table 1. Details of the thermal camera (uncooled microbolometer, thermal resolution: 0.04 K) and the
multispectral sensor used. According to the spatial resolution of the sensors, the pixel size (px) for
VNIR at a height of about 80 meters is about 7 cm/px and for LWIR 10 cm/px.

Sensor Spectral Band Field of View Resolution Greyscale
LWIR/Tau LWIR: 7.5-13.5 pm 45.0° x 37.0° 640 x 512 14-bit
VNIR/Sequoia G: 550 nm, R: 660 nm, 61.9° x 485° 1280 x 960  10-bit

(centre wavelengths)  RE: 735 nm, NIR: 790 nm

An irradiance-sensing element, belonging to the VNIR sensor, was used to account for the present
lighting conditions. This sensor was fixed on the UAV and oriented towards the sky. Both sensors
covered the optical spectrum, separated into four bands (centre wavelength): green/G (550 nm), red/R
(660 nm), red edge/RE (735 nm), and NIR (790 nm). Moreover, the sensor platform was equipped
with an internal fan to cool the devices and to provide a stable ambient temperature, which is relevant
for proper thermal imaging. An advanced autopilot (Pixhawk 4) connected to a GPS antenna for
positioning and a pitot tube (a device measuring the flight speed with respect to wind speed) on the
wing were built-in to automatically fly the programmed routes. Generally, we conducted the UAV
campaigns once or twice times per month during the growing season. The flights were split into
three parts (approximately 60 ha per section), due to the limited power supply of the UAV batteries,
which were generally scheduled at 10:00 (focused study field), 12:00, and 14:00 (CET), to minimise the
influence of shadows in the imagery. Every flight took approximately 30-45 minutes.

2.2.3. Meteorological Data and Reference Measurements

A weather station (GWU-Umuwelttechnik GmbH) was situated in the northern part of the campus
(near the pond), which recorded the following parameters (at 2 m above the ground): wind speed, air
temperature (T,;,), relative humidity (w%), surface temperature (T,,¢) at 0.05m, and net radiation
(Table 2 and Table 3, respectively). Within the rapeseed field, a microclimatic station continuously
recorded (at 1 min intervals) the air temperature and relative humidity (HMP110) as shown in Table 3.
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A pull-up resister (DS18B20) measured the (bare soil) surface temperature with an accuracy of £0.5 °C.
In addition to the water surface temperature of the pond, Ty, s was used to validate the retrieved LST
from the thermal camera (Section 3).

Table 2. Meteorological data (as means) during the flight on 11 April 2018, 13:30-14:20 CET (at 2m
above the ground): wind speed, air temperature, surface temperature (T, f) at 0.05 m and net radiation.
Taking into account small spatial temperature variations, T,; of both stations (area of flown routes)
was averaged (<T,;>).

Time  Wind Speed (ms™!)  <T;>(°C)  Tgyr (°C)  Net Radiation (W m™2)

13:30 1.1£15 11.2+1.2 16.6 368 £+ 24
13:40 1.0+11 11.2+1.0 16.4 360 £ 16
13:50 09+10 115+ 1.1 17.0 423 £ 35
14:00 09+09 11.7£1.0 17.6 494 + 89
14:10 0.5£09 119+ 09 17.7 406 + 126
14:20 0.6 0.9 119£0.8 17.4 309 £17
Means: 08+1.1 11.6 £1.0 17.1 393 £ 51

As the weather conditions were quite stable (Table 2) and there were no noticeable fluctuations in
Tsurf or abruptly changing plant states (such as crop water stress), no further reference measurements
(aside from the water temperature) were carried out with thermocouples to validate the surface
temperatures [29]. However, weather conditions have a direct impact on the surface temperature:
increasing Tj;, will directly increase Ty, ¢ in analogical degree, but also change the net radiation,
affecting the surface temperature. The interdependence of T;, and Ty, as an approach to surface
temperature correction (T, ¢ ) has been proposed by [29]:

Tsurffc = Tsurf — Toir + Tuir_mean/ (13)

where T, ¢ . is the corrected surface temperature, Ty, r, Toir = <Tpir>, and Tyjr_eqan is the mean of
<Tpir> (°C). The correction of Ty, compensates for the noise caused by drifts in air temperature
(Figure 4).
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Figure 4. From air temperature (<T};>) and surface temperature (T, ), the resultant Ty, . from
the campaign on 11 April 2018, 13:30-14:20 CET. At 13:55, the surface temperature is higher than
the corrected surface temperature due to increasing air temperature is compensated by the mean air
temperature (Tyir mean)-

This approach (Equation (13)) was used to account for small discrepancies (dT,,f) in the thermal
measurements caused by the impact of <Tj;>. We calculated the differences of Ty, s and T, ¢ ¢, which
were defined as dTy,, . There were no significant changes in <Tp;,> and T,y during the campaign
and, so, dTg,,r = 0.28 £ 0.1 °C was small.
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Table 3. Meteorological data as means from the weather station (a) and microclimatic station (b) during
the flights on 11 April 2018 at 13:20-13:50 CET (flight 1) and 16:20-16:40 CET (flight 3). The background
temperature (Ty,) and transmittance (7) were used for atmospheric correction.

Time T,y (°C) w% Tbkg °O) T
13:20 124+03 787 +17
Flight 1 (a): pond (time 13:30-13:34) 13:30 122+02 774+13

13:40 126 £03 761+1.8
Means: 124+£03 774+1.6 8.8 £0.2 0.95

13:30 100+ 0.1 97117
Flight 1 (b): experiment (time 13:34-13:49) 1340 1034+0.1 91.0+1.0
13:50 104+0.1 878+1.1

Means: 102+£01 920+£13 8.8+ 0.2 0.95

16:20 135+02 723+19
Flight 3 (a): pond (time 16:30-16:34) 16:30 13704 73717
16:40 136 +04 725422

Means: 136=+03 728+19 -252+04 095

Due to stable weather conditions (Table 2), the averaged values of Ty, (from before, during, and
after the flights) were used (Appendix A.1) to consider the background temperature [29]. Moreover,
for cloudy conditions (diffuse scattering), the background temperature is quite similar to the measured
air temperature (Table 3). Flight 3 showed a much lower background temperature (Tpy,), due to (‘cold’)
clear sky conditions. The transmittance (7) was always about 0.95. Both Ty, and T were used to
perform atmospheric correction.

In addition, during the flights, data at a nearby pond were captured, which were used as reference
for the temperature validation (Section 3). The Normalised Difference Water Index (NDWI) was
applied to locate the surface of the pond [54,55]:

G — NIR
NDWI = CINIR' (14)
where G and NIR are the reflectances in the green and near-infrared spectra, respectively (—1...+1).
According to [56], we used an NDW!I threshold of NDWI > 0.3 to detect the water surface and to
reclassify the corresponding emissivity €, (e, = 0.985) [31,34]. Water surfaces almost totally absorb
LWIR at a layer thickness of >1 mm and show a constant emissivity [40].

In terms of the water surface temperature (T},y,,4) measurements, we constructed a floating triangle
out of bamboo poles (with a side length of 3 m each) for the thermocouples, which were mounted at
each corner and in the middle. The thermocouples were placed at depths of 3.0-30 mm (the dimensions
of a thermocouple element is 5.1 X 33 mm). T,y was measured directly under the surface layer by
four thermocouples, using a data logger with an accuracy of £0.36 °C. The mean temperature of the
four thermocouples was used to validate the retrieved camera temperature (LST),p4). According to
Equation (3), the captured thermal images of the pond were used to retrieve LST},,;. Before and after
the flight over the Common Experiment (Figure 2), each set of 24 suitable thermal images of the pond
was selected for validation. Both T,y and LSTy,,g were used to calculate the temperature deviations
(dTpona) during the flight.

3. Results

The CIR composite (Figure 5a) enhanced the visibility of different varieties for the rape field
studied:
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Figure 5. Rapeseed experiment with 63 plots of 3 X 6 meters planted with 10 different genotypes with
a minimal repetition of 6 plots. Differences between the varieties are highlighted by the CIR map (a);
the NDVI (b) and P, (c) maps were used to estimate the emissivity (11 April 2018, 13:42 CET).

Similar reddish colours showed the same varieties, depending on their biomass, and dark green
plots were plants damaged by frost due to cold spells in the springtime. These plants belonged to the
same genotype and turned out to be less resilient against frost. Plants affected by frost were inhibited
in their growth or entirely perished. Striking greenish patches depicted bare soil areas around the
plots. These patterns continued in the subsequent maps. The NDVI map (Figure 5b) was generated to
find certain NDVI thresholds of bare soil (NDV I,,;; = 0.157; SD = 0.227) and full vegetation (NDV Ip¢
= 0.905; SD = 0.111), which were used to compute the vegetation proportion (Py) and to estimate the
LSE (Section 2.1.2). The P, map (Figure 5c) was used to compute the LSE (Equation (9)), whereas LSE’
was calculated based on the logarithmic relationship (Equation (10)). High NDVI values represent
a healthy and dense canopy; corresponding to P, = 1 for full vegetation. Both the NDVI and the P,
maps confirm the lack of biomass for the withered varieties, resulting in low NDVI. The latter map
even indicated a marginal vegetation proportion (P, = 0) for the affected plots, similar to that of bare
soil surfaces.

The LSE (Figure 6a) and LSE’ (Figure 6b) maps were computed using certain NDVI thresholds
for bare soil, dense canopy, and mixed states (Section 2.1.2). For mixed pixels, LSE was estimated by
information from P, (Equation (9)) and LSE’ by using the logarithmic relationship (Equation (10)).
Comparison of LSE and LSE’ was performed to study the selectivity of both approaches and to evaluate
the accuracy of the NDVI-THM approach (Figure 6¢c). The minimum emissivity was 0.935, representing
loamy to silty soil, and the maximum emissivity was 0.988, representing dense canopy. The LSE (Figure
6a) map, derived by the P, approach, shows detailed information of the open canopy, such as withered
plants and plot edges (white areas with an emissivity of about 0.96). The LSE’ map (Figure 6b), based
on the logarithmic relationship (¢”) between the mean emissivity and the mean NDV], fits for NDVI
values between 0.157 and 0.727 better than for NDVI thresholds of up to 0.905 (i.e., for dense-canopied
rapeseed).
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Figure 6. The LSE map (a) represents the emissivity considering P,; whereas the LSE’ map (b) depicts
the emissivity derived by the logarithmic relationship. The dLSE map (c) accentuates the selectivity of
both approaches.

In contrast, the P, approach could be adjusted to determine the certain NDVI values of different
cereals. The comparison (Figure 6¢) of both approaches shows a selectivity of dLSE = 0.03, especially
for plants affected by frost and plot edges (red areas). This fact could be an indication of a discrepancy
in the estimation of lower emissivities (i.e., for dry vegetation). For dense canopy and bare soil, dLSE
asymptotically approached zero, which confirms the accuracy of the estimated LSE. However, we
have stated that the NDVI-THM approach cannot be used to estimate the emissivity of senescent
or withered plants, as the NDVI of dry vegetation (which is considerably affected by water stress)
has a similar emissivity spectrum as that of bare soil [57,58]. The emissivity of dry vegetation can
reach very low values, compared to healthy plants, which leads to LST values that are considerably
underestimated; without additional consideration of meteorological parameters, a potential error of
about 9K can occur (Section 4).

The BTsens map (Figure 7a) clearly distinguishes colder areas of the dense canopy and warmer
spots (up to 4.8 K) of the rape varieties affected by frost, as well as bare soil surfaces. As the measured
at-sensor brightness temperature does not take into account the surface emissivity and current
atmospheric conditions, BTs.;s should only be used for surfaces with high emissivities and relative
temperature observations under similar weather conditions. The LST retrieval (Figure 7b) included the
estimated LSE (Figure 6a), as well as the present atmospheric conditions. The minimum temperature of
the dense canopy was 13.5 °C and the maximum temperature of the bare soil and dried-up plants was
19.2°C. The difference between LST and BT;.;s (Figure 7c) showed a maximum deviation (dLST) of
1.0K for bare soil surfaces and varieties that had suffered from frost. The accuracy of the LST retrieval
is strongly dependent on the specific surface emissivity and differs substantially with decreasing
emissivity: Without consideration of mixed-resolution cells from soil and vegetation, the LST will be
underestimated for affected pixels by at least 1K (Figure 7c). Hence, we recommend using an NDVI
thresholding method (Section 2.1.2) for the emissivity estimation, in order to consider mixed pixels
and to minimise the uncertainties.

The final LST retrieval (Figure 7b) depicts almost the same temperature distribution as the BTseus
map: warmer spots (up to 5.7 K) showed frost-damaged plants and bare soil, and dense canopy
occurred as colder areas. Compared to the CIR map, with specific reddish colours for same varieties,
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the temperature variation within the plots was larger than for different varieties. Therefore, the
varieties were not distinguishable by certain LST thresholds.

dLST [K]
1.0

Figure 7. The temperature distribution between rape plots and surrounding soil areas: BTse;s map (a)
generated from the LWIR imagery (11 April 2018, 13:42 CET). The LST map (b) based on estimated
LSE after the corrections were made. The dLST map (c) was computed to quantify the temperature
deviation between BTg;,s and the retrieved LST.

Moreover, we had nearly constant weather conditions during the campaigns (Section 2.2.3) and no
noticeable shifts in the plant state. Thus, the temperature variance of the varieties was generally caused
by different evapotranspiration, plant water content, and soil water supply. In our case, the differing
canopy temperature within the plots was mainly related to the diverse emissivities of withered and
healthy plants.

Finally, we analysed the impacts of the meteorological parameters on thermal measurements.
Different assumptions were made to emphasise the effects of when essential parameters, such as
transmittance and environmental thermal emissions, were not taken into account in LST retrieval
(Section 2.1.3). Each case was compared to the uncorrected BTs.;s (Figure 7a) and the modified
LST retrievals (Equations (11) and (12)) to depict the consequences of inaccurately retrieved LSTs:
Case i: Atmospheric transmittance included in LST(7), but without consideration of the background
temperature and specific emissivity (Equation (11)); and case ii: The background temperature and
specific emissivity included in LST(e), but without consideration of transmittance (Equation (12)).
For BTeus without consideration of the atmospheric transmittance, a temperature deviance of up
to 0.4K occurred (Figure 8a). This was mainly caused by water vapour absorption in the thermal
domain. In contrast, omitting the background temperature and specific emissivity led to a deviance
of up to 0.6 K (Figure 8b). This result was derived during cloudy sky conditions (Tyx, = 8.8 °C). Ina
modified scenario, with respect to the background temperature in clear sky conditions, the temperature
deviation was up to 2.9K (Figure 8c). In all scenarios, the largest deviation was found for bare soil
areas. During clear sky conditions, Tjx, had minimal temperature —40 °C and maximal temperature
10 °C, in the case of a diffusely scattering sky [32]. Diffuse scattering (in overcast conditions) leads to
almost identical measurements between the air temperature and the observed background temperature
(Tykg)- However, the background temperature should be taken into account to minimise uncertainties
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and to prevent the LST from being underestimated. In conclusion, environmental thermal emission (if
€ < 1) is the most influential meteorological parameter in thermal measurements.

dLST_refl' (-40) [K]
29

Figure 8. Aberrations of BTsus and LST for different assumptions: the dLSTy,, map (a), only
including the atmospheric transmittance (case i); the dLSTjx, map (b) only considering the background
temperature (case ii) for overcast sky conditions; and the modified dLSTy,” map (c) for clear sky
conditions, to highlight the effects of leaving out essential meteorological parameters.

The NDWI map (Figure 9a) was generated to detect the pond’s surface and to reclassify the
corresponding emissivity (e,,) of the water using a determined NDWI threshold (Section 2.2.3). Based
on the emissivity map (Figure 9b), the mean pond surface temperature (LS Tpona) was retrieved (Figure
9¢c). Before and after the flight over the agricultural experiment site (flights 1 and 3, respectively), we
retrieved 24 suitable LST images (LST},4) to validate the thermal data using the measurements with
the pond thermocouples (T}o,4). Both LST}0,,4 and Tp,png Were used to calculate the mean temperature
deviations (dT},,4) to assess the accuracy of retrieved LST.
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Figure 9. The NDWI map (a) for the border of the water surface, the LSE map of the water surface
(b), and the retrieved water temperature LST),,4 (). The yellow triangle marks the area in which we

measured reference temperatures with thermocouples to validate the thermal data 11 April 2018, 13:32
CET).
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The mean absolute error (MAE) was used to compute the errors of the temperature
comparisons [59]. Flight 1 (Figure 10a) had an error of dTy,,4 1 = 0.53K, with a coefficient of
determination of R? = 0.985 (1 = 24). For flight 3 (Figure 10b), the MAE was dT,,4 » = 0.54K and R? =
0.964 (n = 24).
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Figure 10. Correlation of the retrieved pond temperature (LST},,4) and measured pond temperature
(Typona), with flight 1 (a) on the left and flight 3 (b) on the right 11 April 2018, 13:32 and 16:32 CET,
respectively).

The results of the performed validation, especially for flight 1, confirmed the high significance
of the performance of the retrieval algorithm (Equation (3)). During flight 3, the correlation was
somewhat less significant in comparison to flight 1.

The temperature validation of the rapeseed experiment (dT4p.) also confirmed the high
performance of the LST retrieval (Figure 11). The MAE was dTqp, = 041K and R?>=0.879 (n =
27).
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Figure 11. Correlation of the retrieved surface temperature (LSTy,pe) and measured surface temperature
(Trape) during flight 1 over the rapeseed experiment (11 April 2018, 13:34-13:49 CET).

For the UAV campaigns using the proposed LST retrieval algorithm (Equation (3)), we found the
accuracy of the thermal measurements to be around MAE = 0.5K.

4. Discussion

In this study, we have developed an UAV-based LST retrieval algorithm (Equation (3)) suitable for
conducting thermal campaigns, especially in agricultural areas. Agricultural applications increasingly
demand precise and current LST maps for irrigation scheduling, evapotranspiration and drought stress
monitoring, and plant disease detection. A true physical temperature, as calculated by the LST retrieval
of crops, is essential for calculating indices such as the Vegetation Health Index (VHI) or CWSI [13].
The accuracy of retrieved LST depends mainly on properly estimating the emissivity of the surface
type (LSE). Thus, we have used the proposed NDVI threshold method (Section 2.1.2) to distinguish the
emissivities in three classes: bare soil (NDVI < NDV,;), dense canopy (NDVI > NDVIy), and
mixed states (Equation (9)). For dense canopy, we suggest a global NDV I.¢ of 0.814 (as observed in
summer 2018) or around 0.8 (as proposed by [17]), which was averaged for different crops (i.e., corn,
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wheat, barley, and rape). For bare soil, we derived NDV I,,; to be 0.157, in agreement with [30], or
around 0.2 (as proposed by [17]). In the case of higher sand content, lower NDVI values arise.

The determined emissivity of dense canopy (g = 0.988) agreed with frequently cited values,
as in [27,29,31,60]. However, the plants must be healthy, as the emissivity decreases significantly in
the case of withered crops. In the study site, soil surfaces predominantly consisted of loamy to silty
textures. Thus, we maintained an emissivity of bare soil of €;,;; = 0.935 (as proposed by [31,53]). For
a sandy soil texture, we suggest a lower emissivity, such as 0.914 (as proposed by [30]). Regardless
of the emissivity of mixed resolution cells, the LST was underestimated for the affected pixels by at
least 1 K (Figure 7c). The lower the emissivity, the higher the impact of the background temperature
(Tprg) on the retrieved LST. Hence, we recommend atmospheric correction, especially in (‘cold’) clear
sky conditions, in which observation periods commonly occur to ensure the best radiometric image
quality. However, this method reaches its limits in the case of lower emissivities (e.g., € = 0.88), such
as those for dry vegetation [31,34]. Disregarding essential meteorological parameters (Section 2.1.3)
and assuming an overall emissivity for dense canopy (for instance, of €y¢ = 0.985), a potential error of
about 9K occurs.

For data validation, we continuously measured the water temperature of a nearby pond by
thermocouples, which we compared with each set of 24 suitable retrieved LST images of the pond from
the flights before and after observing the experiment. Water bodies provide a convenient opportunity
for reference measurements, due to their relatively homogeneous and constant surface temperature.
For the pond, we assumed an emissivity of €;, = 0.985 (according to [31,34]). The mean emissivity (in
the LWIR range of the camera) of distilled water (¢ = 0.986), obtained from the emissivity library of the
Moderate Resolution Imaging Spectrometer (MODIS) confirms this assumption [61].

The advantages and disadvantages of conducting thermography under homogeneously cloudy
or clear sky conditions remain to be discussed: Clear sky conditions provide the most contrasting
results; and cloudless weather is indispensable for the validation of airborne or satellite data with UAV
observations. However, the lower the emissivity, the higher the reflection of the surface. Therefore, the
impact of environmental thermal emissions on bare soils and dry vegetation is the greatest, which must
be taken into consideration. Cloudy conditions have a strong impact on the quality of the captured
thermal imagery, since they reduce the contrast and radiometric resolution [13]. However, the impact
of environmental thermal emissions is low (isotropic radiation) and the background temperature is
quite similar to the air temperature. Scenarios with the biggest drawbacks are rapidly changing air
and surface temperatures or cloud shadows in the recordings. In order to ensure the best lighting
conditions, we recommend thermal measurements in clear sky or, at least, in homogeneously cloudy
conditions.

In conclusion, the validations showed MAEs of dT},y,,4 1 =0.53K (R? =0.985) and d Tpona 2 =0.54K
(R? = 0.964), respectively. These results confirm the highly significant performance of the retrieval
algorithm (Equation (3)). For the thermal measurements, we stated an MAE of about 0.5K.

5. Conclusions

In this study, we present a semi-supervised algorithm that combines UAV-based thermal infrared
and multispectral measurements in order to obtain precise LST maps for agricultural applications. For
this purpose, we have developed an innovative dual sensor platform mounted on a fixed-wing
glider that simultaneously captures VNIR and LWIR images. In the analyses, we have noted
the improvements that can be achieved by performing an atmospheric correction to minimise the
uncertainties. The processing chain incorporates:

1. Construction of an ortho-mosaic for NDVI maps, LST maps, and emissivity maps;
2. Atmospheric correction, including the background temperature; and
3.  Emissivity estimation for three surface types (bare soil, dense canopy, and mixed states).
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The high spatial resolution of the LST maps and the capacity of the UAV system to observe the
entire study site (181 ha) within 3-6 hours allow for operational agricultural applications and the
cost-effective validation of airborne and satellite data complying with high quality standards. Special
advantages of the proposed method for agricultural applications are:

1.  Low-cost UAV campaigns for the thermal mapping of large areas with high repetition rates;
Irrigation management, crop water stress monitoring, and plant disease detection; and

3. High spatial resolution of the LST maps (10 cm/pixel) for thermography at the leaf level.

This approach requires neither LST ground stations (except for validation procedures) nor in-situ
stations to account for canopy emissivity change over time. However, the proposed NDVI threshold
method needs NDVI means of the current canopy to estimate the emissivities. In order to ensure
high quality LST results, we recommend performing atmospheric corrections and considering the
background temperature. Further investigation is needed to find a method for the emissivity estimation
of senescent and withered vegetation, in order to prevent the LST from being underestimated in the
case of lower emissivities.
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Appendix A

Appendix A.1. Pre-Processing of VNIR and LWIR Data

Immediately before take-off and after landing, we captured three images (in all VNIR bands) of
a calibrated reflectance panel (MicaSense; Inc., Seattle, WA, USA). Four additional greyscale tarps
(sailcloth, calibrated by a field spectrometer) were captured during the flights. All images contained
GPS, roll, pitch, and yaw angle information as metadata (exchangeable image file format, Exif) obtained
from the VNIR sensor. The stored GPS and solid angle information were used by the ortho-mosaic
software to correct the position of the imagery. The total captured VNIR imagery (including all four
bands) comprised about 7300 recordings (resulting from a frame rate of 2/3 Hz) with a volume of about
17 GB, stored as a 16-bit (binary raw data, raw) tagged image file format (TIFF). The total captured
LWIR imagery comprised about 24,000 recordings (with a frame rate of 8.33 Hz) with a volume of
about 5 GB, stored as 14-bit raw radiometric data stream (TMC). The ThermoViewer 2.1.6 software
was used to convert the TMC files into the 16-bit TIFF format, including metadata with GPS and
heading information from the autopilot as Exif data. The amount of captured imagery was necessary
to generate ortho-mosaics and to compensate for the loss of discarded images (i.e., those taken during
the launch/landing maneuvers and blurred recordings). The VNIR images of the calibrated reflectance
panels were incorporated for radiometric calibration. The PhotoScan 1.4.2 software (Agisoft PhotoScan,
St. Petersburg, Russia) was used for reflectance calibration and for normalisation of the band sensitivity.

For thermal sensors, radiometric calibration is essential to correctly convert raw DN into (spectral)
radiance. The DN of the thermal camera (FLIR Tau 2 640) consists of specific instrument factors, such
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as the self-emission of the detector and its spectral response curve (FLIR’s Tau 2 spectral response
curve [62]). Calibrated blackbody sources at exactly known temperatures allow us to derive the spectral
response curve [63]. This camera is the most sensitive at around 9.75 pm. Blackbody calibration,
however, was done by the manufacturer FLIR. The ThermoViewer 2.1.6 software was used for NUC
and drift compensation of the LWIR imagery (Section 2.1.1). Thermal reflections at the land surface by
emitting background objects (e.g., buildings) and re-emission—for instance, by lower clouds—were
determined to correct the LWIR data (Equation (3)). A pyrometer (optris MSPro; Optris GmbH, Berlin,
Germany), with emissivity set to € = 1, was used to quantify the background temperature (T,) on a
panel of crumpled aluminium foil [29,32,64], which had a very low emissivity of € = 0.03 (0.04 at 10
um [53]) and acted as an isotropically reflecting LAMBERT radiator (see LAMBERT’s cosine law, 1760).
The pyrometer indirectly captured the background temperature in the range of 8-14 pm (accuracy: +1
°C). As a pre-check, we directly measured the overhead sky (not including the sun) to compare with
the Ty, value obtained from the aluminium panel [65]. Averaged temperatures of Ty, from before,
during, and after the flights were used for atmospheric correction.

Appendix A.2. Ortho-Mosaic Construction and Used Tools and Parameters

Overlaps of the captured imagery were standardised for the smallest field of view (FOV), therefore
based on the LWIR camera. Generally, overlaps result from the FOV and flight altitude, which was
about 77 meters. In addition, forward overlaps depend on the frame rate and the UAV’s ground speed.
The resulting distance between each flight line was about 25.5 meters, which was relevant for the side
overlaps. Based on the ground speed of 5-8 ms~!, the FOV of the LWIR camera lens (see Table 1), and
the frame rate (LWIR: 8.33 Hz), the forward overlap was about 98.8% and side overlap was about 60%.
More detailed information is listed in Table Al.

Table Al. Details on the forward and side overlap in the captured imagery at the corresponding
altitude of 77 meters.

Sensor Ground Image Size Frame Rate Ground Speed Frontlap Sidelap
LWIR/Tau 2 63.79 x 51.53 m 8.33 Hz 5ms~! 98.8% 60.0%
VNIR/Sequoia  92.35 x 69.37 m 2/3Hz 5ms~! 89.2% 72.3%

The Calibrate Reflectance tool (PhotoScan) with selected parameters of reflectance panels and sun sensor
was executed, taking into account the captured VNIR images of the calibrated reflectance panels. The
required reflectance values of each band were either obtained from the company of the used panel or
from field spectrometer measurements of the four greyscale tarps described above (Section 2.2.3). The
Normalize band sensitivity tool was utilised to include the spectral response (for each band) of the VNIR
sensor (contained as metadata). For the VNIR sensor, the following pre-calibrated lens parameters
were used: focal length (f, pixels), co-ordinates of the main point (cx and cy), and radial distortion
coefficients (k1-k4). For the LWIR camera, the following most fitting geometric lens parameters, which
were generated during self-calibration in the alignment process (of the Adaptive camera model fitting
tool), were used as fixed pre-calibrated values: {, cx and cy, k1-k4, biased transformation coefficients (b1
and b2), and tangential distortion coefficients (p1-p4). After the pre-processing steps, the ortho-mosaic
was constructed, generating both the VNIR and LWIR maps. Ortho-mosaic construction is a common
method in photogrammetry. Various structure from motion (SFM) software, such as PhotoScan, Pix4D
(Pix4D, Lausanne, Switzerland), and VisualSFM (a freeware GUI application) provide tools to generate
digital surface models (DSM) and ortho-images while compensating for undesirable lens distortion [46].
Even when using a high-performance computer with two graphics cards (for a total of 24 GB of GDDR5
memory), mosaic construction is a time-consuming process due to the quantity of high-resolution
imagery and the required processing operations (the appropriate parameters are listed in Table A2).
Ortho-mosaic construction of the entire study site, using the software PhotoScan 1.4.2, took us about
three days. The remaining calculations (Figure 1) were conducted using the R language. In this context,
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before generating the BT ortho-mosaic, a method was applied to exclude blurry images from further
analysis. As the frame rate of the thermal image data acquisition was quite high, the sharpest image
from each sequence of five consecutive recorded images was identified. The identification of the
sharpest image was done by calculating an image quality measure from the representation of every
single image in the frequency domain after applying a 2D FOURIER transform. A detailed description
of this method can be found in [66]. The image with the highest image quality measure within each
sequence was selected. Thus, only the sharpest images were used in the subsequent process of image
mosaic construction.

Table A2. Tools and parameters selected for ortho-mosaic construction.

Align Photos VNIR Imagery LWIR Imagery
Accuracy Highest Highest
Generic preselection Enabled Enabled
Reference preselection Enabled Enabled
Key point limit 50,000 50,000

Tie point limit 4000 0

Adaptive camera model fitting  Enabled Enabled
Build Dense Cloud

Quality Ultra High High

Depth filtering Moderate Mild

Build Mesh

Surface type Height field (2.5D) Height field
Source data Dense cloud Dense cloud
Face count High High
Interpolation Disabled Disabled
Build Orthomosaic

Surface Mesh Mesh
Blending mode Mosaic Mosaic
Hole filling Disabled Enabled
Back-face culling Disabled Disabled

Export Orthomosaic

Raster transform

Index value

Index value

TIFF compression None None
Write BigTIFF file Enabled Enabled
Generate TIFF overview Enabled Enabled

Appendix A.3. Derivation of the LST Retrieval Algorithm (Equation (3))
From the radiative transfer model (RTM) to the at-sensor temperature (Tsens) [29,43]:
RTM := Lsens = €T+ Loyep + (1 =€) T Les1 4 +(1 = 7T) - Latm 1, (A1)

where term 1 is the emitted radiance from the surface (¢ - Ly, f), term 2 the downwelling radiance
(Lyer 4) reflected at the surface (1 - €), and term 3 the emitted radiance from the atmosphere (Latm 1);
the radiances (W m~2 sr—!) are attenuated by the atmosphere (7). The emissivity (¢) and atmospheric
transmittance (7) are dimensionless (0-1). Simplification of Equation (A1) by setting € =1 (term 1), (1 -
€)=1(term 2), and (1 - 7) = 1 (term 3):

Lsens = (Lsurf + Lrefl \L) T+ Latm T . (AZ)

L:e.a.T‘*@T:f/i, (A3)
€0

The STEFAN-BOLTZMANN law:
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where L is the radiance (W m~2 sr~!), € is the emissivity (0-1), ¢ is the STEFAN-BOLTZMANN constant
(5.67 x 1078 W m~2 K=*%), and T is the absolute temperature (K). By setting the steradian (sr) to one,
Equation (A3) is solved for irradiance (M) Equation (2).
From the at-sensor temperature (Tsens) to the surface temperature (T, f):
Tfms-e-aze-0~T~TS4Wf+(1—e) -U-T-Tlf‘kg+(1—T) o Th, (A4)
where term 1 consists of the surface temperature (T, ¢), term 2 the background temperature (Tj,)
reflected at the surface ((1 — €) - ¢ - 7), and term 3 the air temperature (T,;,). At altitudes above
100 meters, the adiabatic lapse rate should be taken into account to derive the air temperature of
the appropriate height. The background temperature can be indirectly measured from the thermal
reflection at a panel of bottled aluminium foil using a pyrometer (Appendix A.1). Withe =1, T4, - € -
o — BT%,s - 0, solving the formula (Equation (A4)) for T,,, £

air

Topp-€-0-T=0-Blg—(1—€)-0-7-Ty, —(1-1)-0-T, (A5)

4
U'BTgens_(1_€)'0—'T'Tbk8_(1_T)'U'T;ir (A6)

4
< T =
surf €-0-T €- 0T € 0T

)BT, —(1—€)-T-Th —(1—7) T4
N Tswf (6, T) _ \/ sens bkg mr’ (A7)

€T
where Ty, (€, T) is the retrieved surface temperature, BTs.ys the at-sensor brightness temperature, Tyyg

the background temperature, and T,;, the air temperature (K, respectively); and emissivity (€) and
transmittance (7) range from 0-1 (dimensionless).

Appendix A.4. Detailed Technical Information About the UAV (Table A3)

Table A3. Technical details of the fixed-wing UAV.

Item Unit

span 4m

length 2m

take-off weight 5kg

payload 700 g

ground speed 5-8 ms~!

slowest airspeed down to 4.5 ms ™!

general airspeed 7-10 ms ™!

flight time up to 60 min

flight distance up to 2025 km

battery (LiPo 3S) 11.1V; 10,000 mAh (UAV)
battery (LiPo 25) 7.4'V; 3000 mAh (sensor system)

current in steady flight 10 A
current at full throttle 70 A
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