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corrected Schrodinger equation. The quadratic electric potential term modifies
Edited by L. D. Marks, Northwestern University,  atomic scattering amplitudes in particular for large-angle scattering and
USA backscattering. The respective correction increases with increasing scattering
angle, increasing atomic number and increasing kinetic energy. Conventional
tabulations for electron scattering and its large-angle extrapolations can be
amended in closed form by a universal correction based on the screened
Coulomb potential squared.
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1. Introduction

A frequently used framework for the calculation of high-
energy electron diffraction by an atom or ion is the solution of
the relativistically corrected Schrodinger equation (Moliere,
1947; Fujiwara, 1961) with a model for the atomic or ionic
electric potential. These model potentials are tabulated for a
wide range of atomic numbers and frequently occurring ionic
charges in the form of scattering factors (Doyle & Turner,
1968; Doyle & Cowley, 1974; Rez et al., 1994, 1997) or their
parameterizations (Doyle & Turner, 1968; Doyle & Cowley,
1974; Fox et al., 1989; Rez et al., 1994, 1997; Waasmaier &
Kirfel, 1995; Weickenmeier & Kohl, 1998; Peng, 1998; Lobato
& Van Dyck, 2014); see Kirkland (2010) for a survey.
Conventionally, tables of the scattering factors display the
Born scattering amplitude, that is the Fourier transform of the
electric potential times an interaction constant. A relativistic
correction, dependent on the electron speed, is applied to the
tabulated values, which can be directly used to determine
scattering cross sections on the first Born approximation.

The normal form of the relativistically corrected
Schrédinger equation (Moliere, 1947; Fujiwara, 1961) is linear
in the electric potential, yet the correct relativistic energy-
momentum relation, which is the basis of the Klein—-Gordon
equation (Klein, 1926; Gordon, 1926; Kragh, 1984), contains
‘ an additional quadratic term in the electric potential. That
5 term is neglected in the above conventional framework, and
2t g thus, to the best of our knowledge, no tabulations exist for
fully corrected relativistic scattering factors.

The aim of this work is to explore the impact of the quad-
ratic electric potential term on atomic or ionic electron scat-

Ig (scattering amplitude [pm])

2} tering amplitudes in particular at large angles, including
B backscattering. Furthermore, a method is proposed to amend
scatering angle rad] the existing tables for the Born scattering factors. The work

@ presents a brief survey of the required theory, calculations for
BY OPEN ACCESS a set of atoms of small, medium and large atomic number at
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small, medium and large electron energy, and concludes with a
discussion of possible applications.

2. Theory
2.1. Wave equations

The relativistic energy-momentum relation (Einstein, 1905)
(Ey+ E+ V) = p’c = E ™

with rtest energy E, = mc?, kinetic energy E in vacuum,
potential energy V = e¢, momentum p, speed of light c, rest
mass m, elementary charge e and electric potential ¢ is divided
by 2(E, + E) and rearranged:
2 2172

P . BV

—=FE4V .

2m* TV 4E*
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Thus the quadratic energy relation (1) adopts a form akin to a
linear energy relation with the parameters m* = ym, 8 = v/c,
electron speed v,

= ! =1+ E 3)
"Ta-pr T TE
and
1
E* = Em*vz, @)

the relativistically modified kinetic energy in vacuum.

The Klein-Gordon equation (Klein, 1926; Gordon, 1926;
Kragh, 1984) for fixed kinetic energy is derived by substituting
the momentum operator —i%V for the momentum p, and the
relativistically corrected Schrodinger equation (Moliere, 1947,
Fujiwara, 1961) by further neglecting the squared potential
term. As usual, z denotes the Planck constant / divided by 27.

The scattering amplitude f(g) is derived from the wave
equations by an ansatz for the wavefunction,

exp(2mikr)

¥(r) = exp(2ik - r) + f(g) ©)

r

which describes the scattering of a plane wave with wave-
vector k into a spherical wave with an amplitude dependent on
the scattering vector g. The wavevector of a plane partial wave
after scattering is thus k 4 g, and r denotes a coordinate in real
space. For elastic scattering k and k 4 g are equal in magni-
tude,

0
g = 2ksin—, 6)
2
and
1 2 1)
Ll _r=D7 ™
A Ac

with 6 the scattering angle between k and k 4+ g, and A the
Compton wavelength.

The amplitude of the spherical wave is determined in the far
field, at large distance r from a scattering region bounded by a
sphere of diameter d, with kr >> d. If the bounded region
contains a single atom, the scattering amplitude is called the

atomic form factor. The far-field solution of the wave equation
in the above sense is found on the first Born approximation
(Born, 1926) to the first order of an effective potential Vg,
with the well-known result:

1@ =775 [|f vawespt-2mig-nar. ®)

For the relativistically corrected Schrédinger equation V; =
V, and for the Klein—-Gordon equation V4 = V + B°V?/4E*.
The tabulations of atomic form factors according to equation
(8) are used in two ways. The first, and obvious, is the display
of the atomic scattering amplitude, its modulus squared being
the differential scattering cross section (see the next section).
The second is the indirect, through the Fourier transform in
equation (8), but exact display of the atomic scattering
potential.

2.2. Scattering amplitudes for a screened Coulomb potential

The integral (8) for the scattering amplitude of a screened
atomic Coulomb potential (Wentzel, 1926)

_ ZEya,

1% exp(—r/R), )

r

with atomic number Z, Hartree energy E,, Bohr radius a, and
screening radius (Lenz, 1954)
1 4

:Fgo_ﬁ’ (10)

can be solved in closed form, with the well-known result
(Wentzel, 1926):
vZ

_ 11
(s + 5) (an

file) =

The scattering amplitude of the squared atomic Coulomb
potential term

,82V2 B ﬁ2z2Ek21a2

0
= —2r/R 12
o = s exp(=2r/R) (12)
can be found in closed form as well:
Z%a? g
fH(g = g arctanrgo, (13)

with the fine structure constant o.
Both f;(g) and f,(g) have a maximum at g = 0,

vZ

f1(0) = 20,8 = 2)’“021/3 (14)
and
VAT
RO =3 =0, (1)
0

and for small scattering vectors f;(g) is always much larger
than f,(g). A comparison of the asymptotes for large scattering
vectors,

yZ

— 16
2ma,g? (16)

fi —
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(Rutherford, 1911) and
Za?

4g

L= ) (17)
reveals that f,(g) can become equal in magnitude to f;(g) for
large Z. This is particularly clear for the asymptotic values of
backscattering

7 2
fi— —2“ ﬁ? : (18)
14
and
Z2 3
o e (19)
14

when 6 = m and g adopts the largest possible value 2k. The
contribution f, to the total scattering amplitude f = f, + f,
becomes significant for large-angle scattering and back-
scattering.

The differential cross section is

do = |f|?d2 = 27|f(0)|* sin 0 dO (20)

for scattering into a solid angle d2 and azimuthal symmetry.

3. Calculation of scattering amplitudes and cross
sections

Born scattering amplitudes [equation (8)] were calculated for
carbon (Z = 6), germanium (Z = 32) and gold (Z =79) at
kinetic energies of 20, 200 and 2000 keV over the full range of
scattering angles, 6 = 0. ... Two different models were used
for the scattering potential: the screened Coulomb potential
[equation (9)] and the screened Coulomb potential extended
by the squared Coulomb potential term [equation (12)]. The
scattering amplitudes for both models, f; and f; 4 f,, are
displayed in Figs. 1, 2 and 3. The difference between the two
scattering amplitudes increases with increasing scattering
angle, increasing atomic number and increasing kinetic energy.

4 T . T
3+ ]
)
& 2r E =20keV 1
4
2
N |
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5
§ -1f ]
<
L0
=2 ]
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0.0 0.5 1.0 15 20 25 3.0
scattering angle [rad]
Figure 1

Born scattering amplitudes f; (grey) and f; + f, (black) on a logarithmic
scale versus scattering angle for carbon, germanium and gold at a kinetic
energy of 20 keV.

The difference between the two models can be further
expressed by calculating Born scattering cross sections for
total scattering, & = 0. .. 7, which denotes the total mismatch.
The relative difference between the two models is pronounced
for large scattering angles, and thus it is instructive to further
calculate the cross section for backscattering, 6 = 7/2... 7. A
third important measure is the cross section for scattering
outside the typical acceptance angle of an electron micro-
scope, 0 = 250 mrad . . . 7.

The respective cross sections on the two models, and the
relative differences, are compiled in Tables 1, 2 and 3, again for
carbon (Z = 6), germanium (Z = 32) and gold (Z = 79) at
kinetic energies of 20, 200 and 2000 keV. The relative differ-
ences of the total cross sections decrease for increasing energy;
they increase for backscattering and scattering outside the
microscope acceptance angle with increasing energy. With
increasing atomic number the relative differences increase in
any category.

2t E =200 keV }

1g (scattering amplitude [pm])

0r ]
| ]
2L ]
3L ! . . . . .
0.0 0.5 1.0 15 20 255 30
scattering angle [rad]
Figure 2

Born scattering amplitudes f; (grey) and f; + f, (black) on a logarithmic
scale versus scattering angle for carbon, germanium and gold at a kinetic
energy of 200 keV.

2t E = 2000 keV 1

1g (scattering amplitude [pm])
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Figure 3

Born scattering amplitudes f; (grey) and f; + f, (black) on a logarithmic
scale versus scattering angle for carbon, germanium and gold at a kinetic
energy of 2000 keV.
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Table 1
Born scattering cross sections o (pm?) and relative errors for carbon, for
various scattering angles and kinetic energies.

Table 2

. . 2 . .
Born scattering cross sections o (pm~) and relative errors for germanium,
for various scattering angles and kinetic energies.

0 Total > 250 mrad > 7/2 [% Total > 250 mrad > 7/2

20 keV 20 keV

o(f)) 276.3 9.31 0.152 o(f,) 2571.4 247.1 431

o(fy +1) 276.5 9.38 0.157 o(fy + 1) 2593.9 256.3 5.00
0.10% 0.73% 2.92% 0.87% 3.61% 13.9%

200 keV 200 keV

o(fy) 42.26 0.125 0.00198 o(fy) 393.7 3.54 0.0564

o(f, + 1) 42.29 0.128 0.00214 o(fy + 1,) 396.4 3.93 0.0823
0.07% 2.01% 7.40% 0.68% 9.90% 31.4%

2000 keV 2000 keV

o(f)) 21.31 0.00256 0.0000405 o(f,) 198.6 0.0729 0.00115

o(fy +1) 21.32 0.00264 0.0000451 o(fy + 1) 199.0 0.0849 0.00194
0.02% 2.90% 10.3% 0.20% 14.2% 40.5%

Table 3

4. Discussion

Conventional tables of the scattering factors f; (Doyle &
Turner, 1968; Doyle & Cowley, 1974; Rez et al., 1994, 1997;
Kirkland, 2010) are organized such that the Born scattering
amplitude [equation (8)] is only tabulated for a range of
scattering vectors where Rutherford scattering is modified by
the effects of screening, up to, e.g., s = g/2 = 60.0 nm™'. The
amplitudes for larger scattering vectors are understood to be
calculated with the Rutherford formula [equation (16)]. In a
last step the tabulated values have to be multiplied by y as the
interaction constant used in the tabulations conventionally
contains m and not m*.

The above standard procedure can be amended to include
the effects of the squared potential term [equation (12)], thus
providing a proper relativistic correction. Although f, was
calculated for the screened Coulomb potential in equation
(13), it can serve as a universal correction, because in the
range of small scattering vectors, where the details of the
screening would play a role, f, is dominated by f;. For larger
scattering vectors, in the regime of Rutherford scattering
[equation (16)], f, has the proper asymptote [equation (17)].

Thus the conventional tables can be used to derive the
proper relativistic scattering amplitude:

(i) Multiply tabulated values by y.

(ii) Extrapolate the tabulated range through the Rutherford
formula [equation (16)].

(iii) Determine the screening parameter g, using equation
(10).

(iv) Add the squared potential term f, using equation (13).

Once the scattering amplitude is determined, a Fourier
transform to real space provides the effective potential to be
used in diffraction calculations on the Klein-Gordon equa-
tion. The above treatment of the squared potential term
allows, however, the use of simpler algorithms for the solution
of the Schrodinger equation instead.

The implementation of the proper relativistic scattering
amplitude is particularly suitable for the phase grating
approximation of the multislice algorithm (Cowley & Moodie,
1957). The calculation of the phase grating requires a
projection of the potential along the chief propagation
direction, which is achieved by evaluating the structure factor

Born scattering cross sections o (pm”) and relative errors for gold, for
various scattering angles and kinetic energies.

[% Total > 250 mrad > 7/2

20 keV

o(f,) 8567.8 1391.6 26.15

o(fy + 1) 8815.1 1518.4 36.89
2.80% 8.35% 29.1%

200 keV

o(fy) 1313.5 21.42 0.344

o(fy +1) 1343.9 27.41 0.784
2.26% 21.8% 56.1%

2000 keV

o(f,) 662.6 0.444 0.00702

o(fy + 1) 667.0 0.638 0.02106
0.66% 30.4% 66.7%

of an atomic arrangement with the component of the scat-
tering vector along the propagation direction set to zero.
Including the squared potential term would now involve a
Fourier transform to real space, calculation of the squared
potential and line integrations along the propagation direc-
tion, or alternatively a numerically costly convolution in
reciprocal space. Compared with the latter, the prescription
given in this work provides a numerically very efficient way to
determine the respective additional structure factor based on
the form factors f,.

The squared potential correction [equation (13)] is
obviously most significant for backscattering, as can be
deduced from the scattering cross sections displayed in the
rightmost columns of Tables 1, 2 and 3. The error by neglecting
the correction can be as large as 66.7% for the case of gold at a
kinetic energy of 2 MeV. The modification of backscattering
cross sections extends, however, into the region of medium
electron energies and medium to small charge numbers. A
striking example is the cross section for knock-on damage in
germanium, which involves scattering angles from 2.5 rad to 7w
for a kinetic energy of 400 keV to transfer the required
displacement energy of 15 eV to a germanium atom. The Born
cross section for this process is 0.00316 pm’, but only
0.00189 pm* by neglecting correction (13), which is a differ-
ence of 40.2%. An example of knock-on damage of a light
element is oxygen displacement in magnesium oxide at a

4 Of 5 Markus Lentzen -

Relativistic correction of atomic scattering factors

Acta Cryst. (2019). A75



research papers

displacement energy of 55 eV. The Born cross section for this
process at 400 keV electron energy is 0.000504 pm?, but only
0.000441 pm” by neglecting correction (13), which is a differ-
ence of 12.5%.

The modification of the cross sections for scattering outside
the acceptance angle of an electron microscope indicates that
there is also an impact on an important parameter of forward
scattering, namely electron absorption. In transmission elec-
tron microscopy the bore of the objective pole-piece limits the
cone of scattered electrons to a semi-angle of around
250 mrad, and thus a certain fraction of scattered intensity is
missing in the image plane underneath; it appears to be
absorbed by the imaging system. For larger kinetic energies
and larger atomic numbers the estimate of that apparent
electron absorption would be in error on the linear model f;
alone.

5. Conclusion

The conventional framework of electron scattering by an
electric potential is modified by an additional quadratic term
in the electric potential, if the correct relativistic energy-
momentum relation (1) is considered. The respective modifi-
cation of atomic scattering amplitudes increases with
increasing scattering angle, increasing atomic number and
increasing kinetic energy. Conventional tabulations for elec-
tron scattering (Doyle & Turner, 1968; Doyle & Cowley, 1974;
Rez et al, 1994, 1997; Kirkland, 2010) and its large-angle

extrapolations can be amended in closed form by a universal
correction [equation (13)] based on the screened Coulomb
potential squared [equation (12)].
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