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Abstract

This thesis provides a theoretical description of magnetic nanostructures in inversion-
asymmetric environments with strong spin-orbit interaction (SOI). The theoretical con-
cepts introduced here can be applied in the field of spin-orbitronics, which consists of
exploiting the SOI to manipulate the electron spin without external magnetic fields. The
investigated systems display a plethora of interesting phenomena ranging from chiral mag-
netic interactions to gapped magnetic excitations. In practice, we adopt two different ap-
proaches: First, a model-based one relying on the Rashba Hamiltonian, which is employed
to demystify and understand magnetic and transport properties of magnetic nanostructures
embedded in a Rashba electron gas. Second, we use a first-principles approach within the
framework of the Korringa-Kohn-Rostoker (KKR) Green function method to investigate
the ground state properties of magnetic impurities in topologically insulating hosts. This
method is suitable to simulate nanostructures in real space. Then, we employed our newly
developed code based on time-dependent density functional theory to compute the spin
excitation spectra of these magnetic nanostructures embedded in topological insulators.
Moreover, the KKR Green function method was used to simulate the electronic structure
and ground state properties of large magnetic nanostructures, namely magnetic Skyrmions.

In the first part, the analytical Rashba Green function and the scattering matrices mod-
eling the magnetic impurities in the s-wave approximation are employed for the computa-
tion of the magnetic interaction tensor which contains: isotropic exchange, Dzyaloshinskii-
Moriya (DM) and pseudo-dipolar interactions. The competition between these interactions
leads to a rich phase diagram depending on the distance between the magnetic impuri-
ties. Next, we consider an external perturbing electric field and investigate the transport
properties by computing the residual resistivity tensor within linear response theory. The
contribution of SOI is explored. The investigation of arbitrary orientations of the impu-
rity magnetic moment allowed a detailed analysis of contributions from the anisotropic
magnetoresistance and planar Hall effect. Moreover, we calculate the impurity induced
bound currents in the Rashba electron gas, which are used to compute the induced orbital
magnetization. For a trimer of impurities with a non-vanishing spin chirality (SC) a finite
orbital magnetization is observed when SOI is turned off. Since it emerges from the SC, it
was named chiral orbital magnetization.

In the second part, we investigate the doping of topological insulators with magnetic
impurities, which breaks time-reversal symmetry, leading to the prediction of a gap open-
ing at the Dirac point when the magnetic moments are oriented in the perpendicular di-
rection with respect to the surface of the topological insulator. This could potentially
functionalize the topological surface states by enabling the control of the quantum anoma-
lous Hall effect and dissipationless transport. Several experimental investigations obtained
conflicting results, generating a lot of controversy on this point. Since the orientation of
the magnetic moments depends on their magnetic anisotropy energy, we use the KKR
Green function method to investigate isolated 3d and 4d transition metal impurities on the
surfaces and in the bulk of Bi2Te3 and Bi2Se3. We explore the impact of impurity induced
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in-gap states on the orientation of the magnetic moments, their dynamical spin-excitations
and on the zero-point spin-fluctuations affecting the magnetic stability. We propose to use
scanning tunneling spectroscopy in the inelastic mode to verify our predictions.

In the third part, we focus on magnetic Skyrmions which are topologically protected
spin textures. These magnetic entities can be stabilized by the DM interaction. Relying on
the KKR method we access the electronic structure of sub-5 nm Skyrmions and propose
the spin mixing tunneling magnetoresistance (TXMR) for an all-electrical detection of
Skyrmions in devices. Furthermore, we suggest to use X-ray magnetic circular dichroism
(XMCD) as a magnetic microscopy technique for optical detection of non-collinear spin-
textures such as Skyrmions. This can be achieved due to a chiral contribution to the orbital
moments, driven by the non-collinear spin texture, and acquiring a topological nature for
large skyrmions.
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Chapter 1
Introduction

Information technology (IT) consists of storing, manipulating and studying large amounts
of data. In our modern society, IT has become of major importance since most devices
used in our daily lives (such as laptops, smartphones, and even cars) rely on it. A huge
progress has been made in this area since the 1950’s: Computers evolved from wardrobe-
sized machines with storage capacities in the order of MB to tiny gadgets capable of storing
a few TBs. These improvements have been facilitated with the development of spintron-
ics, which embodies the study of the electron spin (additionally to its charge) in solid-state
systems and its usage in devices. One of the most prominent achievements of spintronics
was the discovery of the giant magneto-resistance (GMR) effect [1, 2] by Albert Fert and
Peter Grünberg, for which they were awarded the physics Nobel prize in 2007. The setup
needed to observe the GMR effect consists of a system containing two magnetic layers
separated by a nonmagnetic spacer. When the two magnetic layers are coupled antiferro-
magnetically, a drastic increase in the resistance is observed compared to the ferromagnetic
configuration. The GMR effect was exploited to build magnetic field sensors used in hard
disk drives, biosensors, etc.

Despite the recent progress in the field of spintronics, faster, smaller and more afford-
able devices are still needed. The ever-increasing need for higher storage density oriented
research (or applications) towards the miniaturization of magnetic memories. However,
this miniaturization is constricted by the superparamagnetic limit [3]: when the magnetic
units used to store the information are too small, they become unstable regarding thermal
fluctuations, which may change the orientation of the magnetization resulting in loss of the
information. The construction of reliable smaller magnetic bits requires the use of materi-
als that display a high magnetic anisotropy energy (i.e. a high barrier between the different
magnetic alignments). The magnetic anisotropy originates from a relativistic effect called
the spin-orbit interaction. In theory, the smallest unit that can potentially be used to store
information is a single magnetic atom, for which the quantum mechanical nature must
be taken into account. Therefore, the development of novel high-density storage devices
requires a deep understanding of fundamental concepts such as: the spin-orbit interaction,
magnetic anisotropy energy and other magnetic properties at the nanoscale.
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In practice, the current technology faces other limitations as well. The present elec-
tronic devices are based on silicon and relies on the transport, manipulation, and storage
of the electronic charge. However, due to heat dissipation (Joule effect), their operating
speed is limited [4]. Thus, alternative technologies, such as the spintronic-based devices,
are required. In this case, the energy dissipated during a switching event (most significant
contribution to the dissipation) can be smaller than kBT (kB is the Boltzmann constant and
T is the temperature) for coherently operating spin systems driven out of thermal equilib-
rium [5]. The processing speed of spintronic computing unit has been found comparable
to the existing electronic ones [6]. Another appealing alternative is the use of dissipation-
less spin currents [7]. The existence of such non-dissipative and reversible spin currents
induced by an electric current is allowed according to the generalized Ohm’s law [7].
These spin currents can be manipulated by magnetic fields for example. Recently, a new
spin current control mechanism that takes advantage of the intrinsic spin-orbit interaction
and external electric fields in semiconductors has been predicted [8, 9, 10]. This is known
as the spin Hall effect which was first observed experimentally in GaAs and InGaAs thin
films [11]. The discovery of the spin Hall effect and the interplay between charge and spin
degrees of freedom (relying on the SOI) in nonmagnetic materials opened a new road in
spintronics, called spin-orbitronics.

A very promising class of materials of potential use in spin-orbitronics are topologi-
cal insulators. Their bulk band structure is topologically non-trivial due to the spin-orbit
interaction. They can be observed in two dimensional (2D) or three dimensional (3D)
systems [12, 13]. Topological insulators are insulating in the bulk while hosting conduct-
ing states on the surface. The edge states are topologically protected from backscattering
due to spin-momentum locking and time reversal symmetry. The spin-momentum locking
confines the electrons spin in the surface plane and time reversal symmetry enforces the
spins at ~k and −~k to point in opposite directions.

Topological insulators provide an experimental realization of the quantum spin Hall
effect [14, 12], where the edges host intrinsic spin currents which have the potential to
remodel information processing. In 3D topological insulators, backscattering can be al-
lowed when the Fermi surface has warping (when the Fermi surface is anisotropic). The
spin-momentum locking makes the spin rotate as an electron moves around the Fermi sur-
face. When that happens, the electronic wave function acquires a global non-trivial phase,
known as Berry phase [15]. The presence of a non-zero Berry phase (in this case equal
to π [16]) has a significant impact on the electrical conductivity, leading, for example, to
a weak antilocalization in presence of disorder [17]. More exotic effects can be observed
in topological insulators. One of the most appealing is the Majorana zero modes, which
are predicted to occur when a topological insulator is interfaced with a superconductor.
The experimental realization of Majorana fermions is predicted to be used in fault-tolerant
quantum computing [18]. The Bi2Se3 compound is a good prototype for 3D topological
insulators since its topological surface state remains at room temperature [16]. Bi2Se3

thin films display a lot of interesting properties. For instance, when an electric current is
injected into the material, it generates a spin polarization due to the spin-momentum lock-
ing [19]. The strong spin-orbit interaction in Bi2Se3 also offers an adequate playground for
the observation of spin-orbit torques (SOT). When an in-plane electric current is injected
into a Cr-doped Bi2Se3 bilayer, a giant SOT leads to a switching of the magnetization [20].
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This current-induced magnetization switching may be used in future spin-orbitronics ap-
plications to create low power dissipation devices.

The breaking of time reversal symmetry in topological insulators can be a source of
other numerous interesting effects. As an example, the doping of 3D topological insula-
tors (Bi2Te3 and Sb2Te3) with high concentrations of Cr magnetic impurities allowed the
experimental realization of the quantum anomalous Hall effect (QAHE) at low tempera-
tures [21]. The observation of the QAHE is a signature of a gap opening at the Dirac point,
which is still a topic subjected to controversy: While some experimental investigations re-
ported the presence of a gap [22, 23, 24], others did not observe it [25, 26, 27, 28, 29].
Several mechanisms can lead to a gap opening. For instance, the formation of impurity
bands hybridizing with the topological surface states [30, 31, 32], or the creation of a
ferromagnetic order combined with an out-of-plane magnetic anisotropy (favors a perpen-
dicular orientation of the magnetic moments with respect to the surface) are two examples.
For the latter case, the magnetic anisotropy plays an important role, therefore, it attracted a
lot of attention. It was explored by means of X-ray magnetic circular dichroism (XMCD),
spin-polarized scanning tunneling microscopy (SP-STM), as well as first principles calcu-
lations using density functional theory (DFT) [27, 33, 34, 35, 32, 36]. It was shown that
the nature (donor or acceptor of electrons), the concentration and deposition site of the
magnetic dopant play crucial roles in the determination of the magnetic anisotropy.

The magnetic anisotropy can also be extracted from the transversal spin excitations
spectra of the magnetic impurities. These spin excitations are observed using inelastic
scanning tunneling spectroscopy (ISTS) [37]. They create additional tunneling channels
that induce a variation in the conductance at the magnetic excitation energies. The magne-
tization dynamics can be accessed theoretically from first principles using time-dependent
density functional theory (TD-DFT). The central quantity in TD-DFT is the transverse dy-
namical magnetic susceptibility or response function [38, 39]. This quantity describes the
excitations of the system, giving its energy (from the position of the peak) and lifetime
(from the line-width of the peaks). In recent years, the transverse magnetic susceptibili-
ties of adatoms deposited on metallic surfaces were calculated from first principles [40].
This allowed a quantitative comparison and prediction of experimental data [40, 37, 41].
The knowledge of the dynamical magnetic susceptibility also allows the determination of
the zero-point spin-fluctuations (ZPSF), which quantifies the deviations of the magnetic
moments from their equilibrium direction. These deviations can be relatively large for
adatoms on metallic surfaces [42]. These fluctuations can also reduce considerably the
magnetic anisotropy, making the moment unstable regarding external perturbations.

Besides being important for topological insulators, the spin-orbit interaction is a source
of interest in semiconductors as well. When the inversion symmetry is broken, the spin-
orbit interaction splits the energy bands. This was initially predicted for noncentrosym-
metric wurtzite semiconductors by Dresselhaus [43] and Rashba [44]. When the spin
splitting in momentum occurs at interfaces, it is called the Rashba effect which displays
a spin-momentum locking similarly to topological insulators. In this case, however, the
energy bands are topologically trivial. The Rashba effect leads to several interesting phe-
nomena such as the spin Hall effect, spin interference, spin galvanic effect, magneto-
electric effects and non-collinear magnetism [45]. A giant Rashba spin splitting can be
engineered by depositing a monolayer of Bi on a Si(111) surface [46]. The Rashba ef-
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fect has also been detected on metallic surfaces. The first observation has been made on
a Au(111) surface using ARPES [47]. Afterwards, several clean surfaces also displayed
the same effect [48, 49]. In presence of magnetic impurities, the interplay between the
Rashba effect and magnetism gives rise to various interesting effects. The Dzyaloshinskii-
Moriya (DM) interaction [50, 51] is a typical example. It leads to the formation of non-
collinear magnetic spin textures and fixes their chirality as observed in 2D spin spirals
[52, 53, 54] or unidimensional systems [55, 56]. The DM interaction is defined by the DM
vector which obeys the Moriya rules [50]. More recently, it was reinterpreted in terms
of a Doppler shift induced by an intrinsic spin current [57]. In the long range limit, the
DM interaction is mediated by conduction electrons [58, 59] and displays similarities with
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions [60, 61, 62]. In this limit, it
has been observed experimentally using STM that the DM vector length oscillates while
changing direction [63]. When external perturbations such as electric fields are present,
the combination of Rashba effect and magnetism can be a source of magnetoelectric ef-
fects. Indeed, the magnetization direction has a deep impact on the transport properties of
the system due to the spin-orbit interaction. In the transverse direction, contributions from
the anomalous Hall effect (AHE), involving the out-of-plane component of the magneti-
zation, are expected. They can be related to the topology of the electronic structure and
the Berry phase acquired by the electrons [64]. Moreover, in the longitudinal response,
the anisotropic magnetoresistance (AMR) is observed. It has a quadratic dependence on
the spin-orbit strength (Rashba parameter) and is always a positive quantity. AMR gives
rise to a transverse contribution which is independent from AHE called the planar Hall
effect (PHE) [65, 66]. Even in absence of external electric fields, the Rashba spin-orbit
interaction in conjunction with a finite magnetization (breaking time reversal symmetry)
can give rise to a non-vanishing bound charge current. In the classical picture, these fi-
nite bound currents produce an orbital magnetization. More recently, we observed that
an orbital magnetization can arise due to non-collinear magnetic structures without any
relativistic contribution. We refer to it as chiral orbital magnetization (COM) [67].

As discussed before, the topology of the band structure allows the appearance of a
topological insulating phase with conducting edge states. Analogously, complex topolo-
gies of the magnetic structure are expected to lead to interesting properties in magnetic
systems. For instance, the presence of the spin-orbit interaction in a magnetic inversion-
asymmetric environment generates the DM interaction that can stabilize topological mag-
netic objects such as magnetic Skyrmions — particle-like swirling spin textures [68]. The
magnetic moments forming a Skyrmion rotate progressively from one orientation at the
edges to the opposite orientation at the core, with a fixed chirality. Depending on this chi-
rality, there are two main kinds of magnetic Skyrmions: Néel-type and Bloch-type [69].
Each Skyrmion type conforms with the symmetries of the interactions among the mag-
netic moments. These symmetries are fixed by the crystal structure. Skyrmions were first
observed in magnetic compounds, where the crystal structure is non-centrosymmetric [70,
71]. They were also found in magnetic thin films deposited on heavy metals. The heavy
metal substrate produces a strong DM interaction due to its large spin-orbit interaction.
The first systems studied were Fe/Ir(111) and Pd/Fe/Ir(111) [72]. The sizes of the Skyrmions
found in these systems are typically small (a few nanometers wide). Nonetheless, large
magnetic fields and low temperatures are required to stabilize a Skyrmion lattice or single
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Skyrmions [73].
Skyrmions can be characterized by their topological chargeQ, an integer quantity that

measures the winding of the magnetization. For that reason,Q is also referred as “winding
number”. For topologically trivial magnetic textures such as ferromagnets or spin spirals,
Q is zero. However, Skyrmions have a finite integer Q and are topologically non-trivial.
This provides Skyrmions with intriguing characteristics such as the topological protec-
tion, i.e. a Skyrmion cannot be continuously deformed into another magnetic texture with
a differentQ. This means that Skyrmions are stabilized by a topological barrier [74]. Fur-
thermore, it is essential to mention that Skyrmions possess a solitonic nature, meaning that
they have a finite extension that grants them a particle-like motion and interaction. This
makes them attractive for future spintronics devices [69]. Magnetic Skyrmions are also
appealing since the energy cost required for their motion or excitation is low. The current
densities required to create a Skyrmion motion are orders of magnitude lower in compar-
ison to the ones used to move magnetic domain walls [75, 76]. The topological magnetic
structure of Skyrmions also revealed to be a source of other interesting effects. For in-
stance, the non-collinear spin texture gives rise to emergent electromagnetic fields [77].
These fields generate a topological Hall effect (THE) that provides an electric signature of
magnetic Skyrmions [78, 79].

In order to unravel and connect the physics of topological insulators, Rashba effect and
Skyrmions, in this thesis we investigate the interplay between magnetism and spin-orbit
interaction. On the one hand, we study magnetic doping of a 2D Rashba electron gas. We
use a simple two band Rashba model to build a bottom up approach in order to understand
and demystify the multitude of phenomena generated by the scattering of Rashba electrons
off magnetic impurities. On the other hand, we use DFT to have a material specific and
accurate description of magnetic impurities embedded in topological insulators thin films
and bulk. Furthermore, we employ TD-DFT to access the dynamical properties of these
magnetic impurities under time-dependent external magnetic fields. Finally, we investigate
larger magnetic nanostructures, Skyrmions, fully from first principles and examine their
electronic structure, as well as their spin and orbital magnetic properties. The different
concepts explored in this thesis represent a collection of theoretical advances in the field
of spin-orbitronics. The thesis is structured as follows:

Chapter 2 consists of a theoretical introduction. The basics of DFT and its spin-
polarized extension are presented, followed by a solution of the Kohn-Sham equations
within the framework of multiple scattering theory using the Korringa-Kohn-Rostoker
(KKR) Green function method. We then discuss the magnetic anisotropy and its compu-
tation from DFT using different methods: band energy differences and the torque method.
Afterwards, an extension to TD-DFT is presented allowing the computation of spin exci-
tations. In the zero-frequency limit, the phenomenological Landau-Lifshitz-Gilbert (LLG)
model is used to help interpret the spin excitation spectra and extract information about the
magnetic anisotropy, damping and nutation of the magnetization. This chapter is closed
by connecting the zero-point spin-fluctuations to the dynamical magnetic susceptibility.

Chapter 3 focuses on the scattering of the Rashba electrons on magnetic impurities
and the related emerging phenomena. By means of scattering theory, the Rashba Green
function is computed analytically. The transition matrices characterizing the magnetic
impurities are derived within the s-wave approximation. Relying on the infinitesimal rota-
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tion method [80], the magnetic exchange interaction tensor is calculated. Afterwards, we
perform numerical calculations to determine the ground state orientation of the magnetic
moments of the impurities. Furthermore, we apply an external perturbing electric field
and investigate the magnetoelectric properties resulting from the magnetic impurities. The
residual resistivity tensor is calculated using linear response theory, the AMR and PHE
were observed. Moreover, we explore the orbital degree of freedom of a magnetically
doped Rashba electrons by calculating the bound currents. A multiple scattering expansion
of the Green function was performed to establish a link between the orbital magnetization
and the chiral magnetic texture of the impurities. The model system used consists of Fe
impurities deposited on a Au(111) surface state that display a Rashba splitting [47].

In chapter 4, we employ the real space KKR Green function method to investigate mag-
netic impurities embedded in topological insulators. When the magnetic moment of the
impurity is perpendicular to the surface of the topological insulator, a gap opening at the
Dirac point was predicted [81, 16]. Therefore, we computed the ground state properties of
3d and 4d transition metal magnetic impurities embedded in Bi2Te3 and Bi2Se3 thin films
and bulk (prototypes of 3D topological insulators). Impurity induced in-gap states are ob-
served in the LDOS, which may fill the band gap. These calculations allowed to highlight
the importance of the bulk states on the electronic structure of the impurities. We then
compute the magnetic anisotropy energy, and show that it can reach rather large values —
up to 6 meV for Co in Bi2Te3 with an out-of-plane orientation. The magnetic anisotropy
is computed using three different methods: band energy differences, torque method and
the static magnetic susceptibility. The strengths and limitations of each method are high-
lighted. In addition to that, we investigate the magnetic excitation spectrum of 3d and 4d
impurities embedded in these topologically insulating hosts. For that, we used our freshly
implemented code which computes consistently the spin excitations spectra for magnetic
atoms embedded in hosts with strong spin-orbit interaction. We also discussed the mag-
netization dynamics in terms of the extracted the LLG parameters. Finally, relying of
the fluctuation-dissipation theorem, the magnetic susceptibility is used to compute ZPSF,
which are employed to estimate the reduction of the magnetic anisotropy barrier.

In chapter 5, the real space KKR Green function method is used to simulate larger
magnetic structures, Skyrmions, that are created in a magnetic layer deposited on a heavy
metal with strong spin-orbit interaction. We simulate a single magnetic Skyrmion em-
bedded in the Fe layer of a Pd/Fe/Ir(111) heterostructure. Three different Skyrmion sizes
have been considered. Once more, a multiple scattering expansion of the Green function
leads to an interpretation of the spin splittings observed in the LDOS of the magnetic
elements. The change in the splitting of the LDOS gives rise to the tunneling spin mix-
ing magnetoresistance (TXMR). These observations are corroborated using a generalized
Alexander-Anderson model. Moreover, we investigated the orbital magnetization for the
considered Skyrmions. The non-vanishing chirality of their spin structure gives birth to
a COM, which can be observed by comparing their orbital magnetization with and with-
out spin-orbit interaction. Finally, we show that for large magnetic Skyrmions, the COM
is quantized and becomes a topological orbital magnetization (TOM), which is invariant
under continuous deformations of the Skyrmion.

We then conclude the work, summarizing the results and providing a short outlook on
future interesting research directions.
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Chapter 2
Theoretical foundations

Solids are ordered arrangements of atoms, which consist of nuclei and a cloud of electrons
surrounding them. Using the Born-Oppenheimer approximation [82], the nuclear motion
can be decoupled from the electronic one, we then are left with the electronic many-body
problem, which is described in the non-relativistic case by the static Schrödinger equation
given in Eq. (2.1). The exact solution of this equation requires a huge computational effort
and is impossible for systems containing a large number of interacting electrons. In order
to circumvent this problem Hohenberg, Kohn and Sham introduced density functional
theory (DFT) [83, 84], which allows to access the ground state properties of interacting
systems.

This chapter is structured as follows: First, we discuss the basics of DFT and the main
approximations used to solve its central object, the Kohn-Sham equations. Second, we
review a solution of these equations in the framework of multiple scattering theory using
the Korringa-Kohn-Rostoker (KKR) Green function method [85, 86, 87]. This method is
a very powerful technique which allows the computation of periodic systems and defects
(using a real space embedding scheme). It consists of two steps:

• Solve the Kohn-Sham equations for each atom separately.

• Connect the atomic sites to each other using multiple scattering theory.

Third, we discuss the computation of magnetic anisotropy using DFT. This anisotropy
fixes the direction of the magnetization according to the crystal structure. Fourth, we
review the extension of DFT to time-dependent systems (TD-DFT) including a linear re-
sponse formulation of the problem. The linear response approach is used when the system
is subjected to small time-dependent perturbations. TD-DFT will be used to study the dy-
namical magnetic excitations of magnetic impurities embedded in topological insulators.
Finally, we briefly summarize the technical aspects of the codes used in the thesis, and the
required developments to generate some of the results shown in the thesis.
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2.1 The many-body problem
A system containing N interacting electrons is described in non-relativistic quantum me-
chanics by the many-body Schrödinger equation:

Ĥ ψi(~r1 σ1, ~r2 σ2, ...., ~rN σN ) = εi ψi(~r1 σ1, ~r2 σ2, ...., ~rN σN ) , (2.1)

Ĥ is the Hamiltonian of the system. ψi(~r1 σ1, ~r2 σ2, ...., ~rN σN ) is the antisymmetric
many-body wave function and eigenfunction of Ĥ with the eigenvalue εi. {~ri σi} represent
the real-space position and spin of the ith electron. Ĥ can be decomposed into three parts:

Ĥ = T̂ + V̂ + Ŵ ,

T̂ =
∑N
i=1−~∇2

~ri
,

V̂ =
∑N
i=1 v(~ri) ,

Ŵ = 1
2

∑N
i 6=j

2
|~ri−~rj | .

(2.2)

T̂ is the kinetic energy operator and ~∇~ri is the gradient according to ~ri. V̂ is an external
potential that includes the interaction with nuclei or with, for example, an external field.
Ŵ is the Coulomb electron-electron interaction. Ĥ from Eq. (2.2) is given in Rydberg
atomic units (~ = 1, e =

√
2,me = 1

2 ). The solution of the many-body problem consists
of finding ψi(~r1 σ1, ~r2 σ2, ...., ~rN σN ). However, this task is very hard to achieve due to
the electron-electron interaction which does not allow a factorization of the wave function.
The complexity of the problem grows exponentially with the number of particles (N). As
an example we consider an Fe atom, it contains 26 electrons, in three-dimensions we have
3× 26 = 78 degrees of freedom, and if we try to solve Eq. (2.1) on a real space grid with
10 points in each dimension, one needs to store 1078 numbers which is approximately the
number of atoms in the universe. Considering that systems in solids contains thousands
of atoms, we clearly see that it is impossible to store such amount of data. Therefore, a
better method for treating solids using a quantum mechanical description of the electron is
needed. This is possible using DFT which will be discussed in detail in the next section.

2.2 Density functional theory (DFT)
One possible way to circumvent the problem is to focus on the single-particle probability
density instead of computing the many-body wave function. For a system constituted
of N interacting electrons described by Ĥ of Eq. (2.1), the ground state single-particle
probability density reads:

n0(~r) =
∑
σi

∫
d~r2...d~ri |ψi(~r σ1, ~r2 σ2, ...., ~rN σN )|2 , (2.3)

where n0(~r) is computed from the wave function, which obeys the Schrödinger equation.
Thus, it is straightforward to see that n0(~r) is a functional of the external potential v(~r)
(i.e. n0[v](~r)). The converse relation which states that the potential is a functional of the
density is contained in the first Hohenberg-Kohn theorem [83]: “The ground state density
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n0(~r) uniquely determines the potential v(~r), up to a constant”. The second theorem states
that: “The total energy functional is minimized by the ground state density”. The remain-
ing task is to find the ground state density. This was achieved by Kohn and Sham [84],
they introduced an auxiliary system (Kohn-Sham system) containing non-interacting par-
ticles with same ground state density as the interacting one. The non-interacting particles
are subject to a Kohn-Sham potential vKS(~r), the latter one is divided into a dominant part
which is known analytically and a small unknown contribution which has to be approxi-
mated. The Hamiltonian describing the Kohn-Sham system is:

HKS =
N∑
i=1

−~∇2
~ri

+ vKS(~ri) . (2.4)

HKS is the so-called Kohn-Sham Hamiltonian. The many-body wave function for the
non-interacting system is given by a Slater determinant of single-particle orbitals φi(~r)
(Kohn-Sham orbitals) which fulfill the following Schrödinger equation:(

−~∇2
~r + vKS(~r)

)
φi(~r) = εi φi(~r) . (2.5)

εi represent the single-particle energies and the ground state density is:

nKS(~r) =
N∑
i=1

|φi(~r)|2 . (2.6)

Coming back to the interacting many-body problem, we express the total energy functional
of the system as

E[n] = T [n] +W [n] +

∫
d~r n(~r) v(~r) , (2.7)

where T [n] and W [n] represent the kinetic and electron-electron interaction energies, re-
spectively. We now write E[n] using the quantities of the non-interacting system defined
by Eq. (2.4):

E[n] = TKS[n] +

∫
d~r n(~r) v(~r) +

∫
d~r

∫
d~r ′

n(~r)n(~r ′)
|~r − ~r ′| + Exc[n] . (2.8)

TKS[n] is the kinetic energy of the non-interacting particles, the second term is the energy
due the external potential v(~r), the third term is the classical Coulomb energy and the last
one is called exchange-correlation energy, which can be written as:

Exc[n] = T [n]− TKS[n] +W [n]−
∫

d~r

∫
d~r ′

n(~r)n(~r ′)
|~r − ~r ′| . (2.9)

Assuming that nKS(~r) = n0(~r) and using the second Hohenberg-Kohn theorem in Eq. (2.8)
(minimum energy condition) for a fixed number of particles N , we obtain the expression
of the Kohn-Sham potential:

vKS(~r) = v(~r) +

∫
d~r ′

2n0(~r ′)
|~r − ~r ′| + vxc[n0](~r) . (2.10)
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The previous equation shows that knowledge of vKS(~r) gives the exact ground state density
for the interacting many-body problem. However, the exchange-correlation contribution
vxc[n0](~r) = δExc

δn(~r)

∣∣∣
n0

is unknown, therefore, one needs approximations for this term. In

practice, several approximations for the exchange-correlation energy are used such as the
local density approximation (LDA) which is discussed in the next section.

2.2.1 Approximations to the exchange-correlation energy functional
The first approximation for the exchange-correlation energy was the LDA introduced by
Kohn and Sham. In this approximation the exchange-correlation energy has a local depen-
dence on the density:

ELDA
xc [n] =

∫
d~r n(~r) εxc(n(~r)) . (2.11)

εxc(n(~r)) is the exchange-correlation energy density of the homogeneous electron gas.
The LDA is expected to provide accurate results for systems with densities that vary slowly
in space. However, it also provides good results for inhomogeneous systems, since the
LDA fulfills exact constraints leading to correct physical results. εxc(n(~r)) can be decom-
posed into two parts:

εxc(n(~r)) = εx(n(~r)) + εc(n(~r)) . (2.12)

The first term in the previous equation, represents the exchange contribution which can
be calculated using the Hartree-Fock method for the homogeneous electron gas [88] and

is given by: εx(n(~r)) = − 3
2

(
3
πn(~r)

) 1
3 . The second term in Eq. (2.12) is the correlation

contribution, it can be obtained numerically for example using the Quantum Monte Carlo
method [89]. More elaborate approximations for the exchange-correlation energy func-
tional were introduced afterwards. For example, the generalized gradient approximation
(GGA), which takes into account the gradient of the density [90]. In this thesis, we use the
LDA with a parametrization provided by Vosko, Wilk, and Nusair [91].

2.2.2 DFT for spin-polarized systems
Previously, we omitted the spin degree of freedom. The Kohn-Sham formalism was ex-
tended to spin-polarized systems by von Barth and Hedin [92]. The Kohn-Sham orbitals
are replaced by spinors:

φ
i
(~r) =

(
φ↑i (~r)
φ↓i (~r)

)
=
∑
σ=↑,↓

φσi (~r)χσ . (2.13)

χσ represent the basis vectors in spin space with respect to some chosen quantization axis:

χ↑ =

(
1
0

)
; χ↓ =

(
0
1

)
. (2.14)

The exchange-correlation energy is now a functional of the ground state particle density
n0(~r) and spin density ~m0(~r) i.e. Exc = Exc[n, ~m], the central quantities in the spin-
dependent Kohn-Sham formalism namely n0(~r) and ~m0(~r) are related to the Kohn-Sham
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spinors via:

n0(~r) =

Nocc∑
i=1

φ†
i
(~r) 12 φi(~r) ; ~m0(~r) =

Nocc∑
i=1

φ†
i
(~r) ~σ φ

i
(~r) . (2.15)

12 is the 2× 2 identity matrix and ~σ is the Pauli vector which contains the Pauli matrices
defined as:

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (2.16)

The Kohn-Sham equation given in Eq. (2.5) is rewritten to include the exchange-correlation
magnetic field ~Bxc(~r), which is due to the finite spin polarization of the system:[(

−~∇2
~r + vKS(~r)

)
12 + ~Bxc(~r) · ~σ

]
φ
i
(~r) = εi φi(~r) . (2.17)

The previous equation shows that the non-interacting particles of the Kohn-Sham system
are not only subjected to a potential vKS(~r) but also coupled to the exchange-correlation
magnetic field ~Bxc(~r), which is related to Exc[n, ~m] via:

~Bxc(~r) =
δExc[n, ~m]

δ ~m(~r)

∣∣∣∣
n0,~m0

. (2.18)

~Bxc(~r) is a functional of n0 and ~m0. Similarly to vxc[n], ~Bxc(~r) is approximated in prac-
tice. In the local spin density approximation (LSDA) ~Bxc(~r) always points in the same
direction as ~m0(~r). From Eq. (2.17) one can see that φσi (~r) are coupled. Nonetheless, for
collinear magnetic systems ~σ can be replaced by σz , when a suitable choice of the quan-
tization axis is made, thus, the component of φ

i
(~r) decouples allowing to solve Eq. (2.17)

for each component separately.

2.3 Green functions and embedding technique
In practice, we want to use DFT to compute material-specific magnetic properties of
nanostructures deposited on surfaces. Most DFT codes are based on wave function meth-
ods which rely on periodic boundary conditions. Therefore, in order to simulate a defect
embedded in a pristine crystalline host, one needs to use a large supercell to avoid inter-
actions between the defect and its periodic copies. We follow a different route and use
a Green function based method which consists of two steps: first, the Green function of
the periodic host is computed. Second, assuming that the perturbation in the potential is
localized around the defect, we consider a real space cluster in which the impurity (we
call impurity any finite nanostructure placed in an otherwise periodic system) is embedded
using a Dyson equation [93, 94].

We define the single-particle Green function as the solution of the inhomogeneous
counterpart of the single-particle Kohn-Sham equation given Eq. (2.5):

(ε+ iη −HKS(~r)) G(~r, ~r ′, ε) = δ(~r − ~r ′) . (2.19)
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Here η is a positive real number for the retarded Green function used through the thesis.
We may take the limit η → 0+ at the end of the calculation. Using the eigenvalues εi and
eigenfunctions φi(~r) of the homogeneous counterpart of Eq. (2.19), the Green function
G(~r, ~r ′, ε + iη) can be written as sum over all eigenstates. This is called the spectral or
Lehmann-representation of the Green function:

G(~r, ~r ′, ε+ iη) =
∑
i

φi(~r)φ
∗
i (~r
′)

ε+ iη − εi
. (2.20)

The previous equation shows that the Green function has poles at εi which are the eigenen-
ergies of HKS(~r). In the limit η → 0+, G(~r, ~r ′, ε + iη) describes the propagation of an
outgoing wave at a point ~r, created from a source at a position ~r ′. This can be easily seen
when considering the time-dependent Green function defined as the Fourier transform of
G(~r, ~r ′, ε+ iη):

G(~r, ~r ′, t− t ′) =

∫ +∞

−∞

dε

2π
G(~r, ~r ′, ε+ iη) e−iε(t−t′) . (2.21)

For an electron subjected to a time-independent potential, the wave function ψ(~r, t) at a
point ~r and time t can be written as [94]:

ψ(~r, t) =

∫
d~r ′G(~r, ~r ′, t− t0)ψ(~r ′, t0) . (2.22)

where t0 < t sinceG(~r, ~r ′, t−t0) propagates the wave function forward in time, therefore,
the Green function is also referred to as a propagator.

The Green function for the periodic system is computed in the framework of multiple
scattering theory described in Sec. 2.4. The impurity is embedded via a Dyson equa-
tion [94, 95]:

GI(ε) = GH(ε) +GH(ε) (V I − V H)GI(ε) ,

= GH(ε) +GH(ε) ∆V GI(ε) .
(2.23)

For simplicity, we have omitted the position dependence in the potentials and the Green
function G(ε). Eq. (2.23) is solved in a finite region surrounding the impurity, since the
perturbation it causes is localized in space. V I and V H represent the potentials in the region
disturbed by the impurity, with and without the defect, respectively. GI(ε) defines the
Green function of the system in presence of the impurity, GH(ε) is the Green function of
the undisturbed host. The previous Dyson equation given in Eq. (2.23) can be understood
in terms of multiple scattering events due to the perturbing potential ∆V . When expanding
GI(ε) in the right hand side we obtain:

GI(ε) = GH(ε) +GH(ε) ∆V GH(ε) +GH(ε) ∆V GH(ε) ∆V GH(ε) + ... . (2.24)

The previous equation represents the expansion of the Green function into Born series.
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2.3.1 Ground state expectation value of an observable from the Green
function

Using the spectral representation of the Green function given by Eq. (2.20) combined with
the following identity,

lim
η→0+

1

ε± iη − εi
= P

(
1

ε− εi

)
∓ iπδ(ε− εi) , (2.25)

where P is the principal value, we can easily show that the ground state expectation value
of any observable represented by a single-particle operator Ô at zero temperature is ex-
pressed through the Green function as:

〈Ô〉 = − 1

π
Im
∫ εF

−∞
dεTr ÔG(ε) . (2.26)

εF is the Fermi energy of the system. The trace is taken over all degrees of freedom,
namely: position, orbitals and spin. The electron density, which is the central quantity in
DFT as discussed in Sec. 2.2 can be easily computed in the position representation via:

n(~r) = − 1

π
Im
∫ εF

−∞
dεTrG(~r, ~r, ε) . (2.27)

For spin-polarized systems discussed in Sec. 2.2.2, the Kohn-Sham orbitals are replaced
by spinors. Therefore, the Green function acquires a spin structure and is defined as:

G(~r, ~r ′, ε+ iη) =

(
G↑↑(~r, ~r ′, ε+ iη) G↓↑(~r, ~r ′, ε+ iη)
G↑↓(~r, ~r ′, ε+ iη) G↓↓(~r, ~r ′, ε+ iη)

)
. (2.28)

The bold symbol is used to indicate that the Green function is a matrix in spin space. The
spin magnetization density ~m(~r) is also a quantity of interest and is simply given by:

~m(~r) = − 1

π
Im
∫ εF

−∞
dεTr ~σG(~r, ~r, ε) . (2.29)

We have briefly discussed the utility of Green functions for treating defects embedded in
periodic solids. We defined the single particle Green function, and related it to the ground
state expectation value of observables used in density functional theory. In the next section,
we explain how the Green function is computed in practice in the framework of multiple
scattering theory.

2.4 The Korringa-Kohn-Rostoker Green function method
The Green function is obtained in practice using the Korringa-Kohn-Rostoker (KKR)
method, initially proposed by Korringa, Kohn and Rostoker [85, 86]. This method consists
of dividing the space into Voronoi cells, each cell is constituted of a scattering center and
its neighboring points in space. The scattering centers usually represent atoms in a solid.
In our description of the method we limit ourselves to the atomic sphere approximation
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(ASA), where the Voronoi cell is a sphere and the scattering potential is radially sym-
metric (i.e. V (~r) = V (r)), and we include the full charge density. A general discussion
including a full-potential treatment can be found in Ref. [96]. For the magnetic case we
introduce the rigid spin approximation (i.e. ~Bixc(~r) is parallel to ~ei which represents the
average magnetization direction within each cell i). The electronic structure is obtained
within two steps. First, each atomic region is considered separately as a single atom. This
single-site problem is solved by expanding the electronic wave function in a spherical har-
monics basis, then solving the radial Schrödinger equation numerically in presence of the
atomic potential. The boundary conditions are specified in the second step, which consists
in connecting the atomic sites to each other, using multiple scattering theory. When an
electron is scattered by the potential of an atomic region, the outgoing electronic wave
can be represented by the incoming wave and a transition matrix (t-matrix). The intercell
electron propagation is described by the structural Green function defined in Sec. 2.4.3,
it consists of a free electron Green function renormalized by the presence of atomic po-
tentials via the t-matrix. The latter ensures that an electron wave coming into a cell is a
superposition of the outgoing waves from the rest of the cells forming the solid. Therefore,
the Green function in the KKR representation is a sum of two contributions: an onsite and
a non-local one.

2.4.1 Free electrons

Before discussing the KKR formalism applied for real crystals, we first apply it to the
simple case of a three-dimensional free electron gas (i.e. V (~r) = 0). The electronic
wave function ψ~k(~r) is a plane wave and is expanded in the real spherical harmonics basis
YL(r̂) = YL(θr, φr) and ~r is expressed as ~r = (r cosφr sin θr, r sinφr sin θr, r cos θr)
in Cartesian coordinates. L is a combined index for the orbital angular moment quantum
numbers (l,m):

ψ~k(~r) = ei~k·~r ,

=
∑
L

4πiljl(kr)YL(r̂)YL(k̂) .
(2.30)

The wave vector ~k is related to the energy ε via k = |~k| = √ε, and r = |~r|. jl(kr) is the
spherical Bessel function of first kind. The Green function connecting a point located at a
position ~r in space to a point located at ~r ′ in a three-dimensional free electron gas, for an
energy ε is given by:

g(~r, ~r ′, ε) = − 1

4π

eik|~r−~r ′|

|~r − ~r ′| . (2.31)

g(~r, ~r ′, ε) is expanded in its turn in a real spherical harmonics basis:

g(~r, ~r ′, ε) = −ik
∑
L

YL(r̂) gl(r, r
′, ε)YL(r̂ ′) ,

= −ik
∑
L

YL(r̂) jl(kr<)hl(kr>)YL(r̂ ′) .
(2.32)
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gl(r, r
′, ε) are the expansion coefficients, r<(>) is the smaller (larger) of the radii r and

r′, respectively. jl(kr) and hl(kr′) represent the spherical Bessel and Hankel functions
of first kind, respectively. In the limit r → 0, jl(kr) is finite while hl(kr) diverges. In
the spirit of the KKR method, we now divide the space occupied by the three-dimensional
free electron gas into cells, each cell is centered at a position ~Xi from the origin and define
~x as an incell position according to ~Xi, therefore, ~r = ~Xi + ~x. The Green function given
in Eq. (2.32) is rewritten in the KKR representation as:

g(~x+ ~Xi, ~x
′ + ~Xj , ε) = −ik

∑
L

YL(x̂) jl(kx<)hl(kx>)YL(x̂ ′) δij

+
∑
LL′

YL(x̂) jl(kx) gijLL′(ε) jl′(kx
′)YL′(x̂

′) .
(2.33)

gijLL′(ε) are called structural Green functions or structure constants, they can be computed
as follows:

gijLL′(ε) = −4πik (1− δij)
l+l′∑
L′′

il−l
′+l′′CLL′L′′ hL′′(k| ~Xi − ~Xj |)YL′′(X̂i − X̂j) .

(2.34)
The coefficients CLL′L′′ are the Gaunt coefficients:

CLL′L′′ =

∫ ∫
dφx dθx sin θx YL(x̂)YL′(x̂)YL′′(x̂) . (2.35)

θx and φx are the polar and azimuthal angles in spherical coordinates, respectively. ~x can
be expressed as: ~x = (x cosφx sin θx, x sinφx sin θx, x cos θx) in the Cartesian basis.

2.4.2 Single site problem
We now consider the presence of a finite potential V i(~x) within each cell i and solve
the Schrödinger equation to determine the electronic wave function ψi~k(~x). Similarly to
Eq. (2.30) the electronic wave function is expanded in a real spherical harmonics basis:

ψi~k(~x) =
∑
L

4πilRiLL′(x, ε)YL′(x̂)YL(k̂) . (2.36)

Assuming a spherically symmetric potential (i.e. V (~x) = V (x)), there is no mixing be-
tween the angular momentum channels of RiLL′(x, ε). Thus, RiLL′(x, ε) is diagonal in the
L-subspace and Eq. (2.36) is simply written as:

ψi~k(~x) =
∑
L

4πilRil(x, ε)YL(x̂)YL(k̂) . (2.37)

For simplicity, we consider a non spin-polarized system and the radial Schrödinger equa-
tion reads: [

− 1

x

∂2

∂x2
x+

l(l + 1)

x2
+ V i(x)− ε

]
Ril(x, ε) = 0 , (2.38)
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The formal solution of Eq. (2.38) is given by the Lippman-Schwinger equation:

Ril(x, ε) = jl(kx) +

∫ xm

0

dx′x′2 gl(x, x
′, ε)V i(x′)Ril(x

′, ε) . (2.39)

The previous equation describes the propagation of an incident partial wave jl(kx) eigen-
state of the three-dimensional free electron gas (see Eq. (2.30)) scattering at a potential
V i(x). xm is the radius of the atomic sphere. Ril(x, ε) is called the regular solution of
the Schrödinger equation, as it remains finite for x → 0. When V i(x) vanishes, Ril(x, ε)
is simply given by jl(kx). Considering x > xm and the definition of gl(x, x′, ε) given in
Eq. (2.32), we can introduce the t-matrix as:

til(ε) =

∫ xm

0

dx′x′2 jl(kx
′)V i(x′)Ril(x

′, ε) . (2.40)

til(ε) contains the information about the scattering phase shifts δil (ε) which are discussed
in details in Sec. 3.3 for a two dimensional electron gas. The t-matrix will be used in the
next section on multiple scattering to compute the structural Green function. Eq. (2.38)
also has an irregular solution Hi

l (x, ε) which diverges when x→ 0, it is given by:

Hi
l (x, ε) = hl(kx)βil +

∫ xm

0

dx′x′2 gl(x, x
′, ε)V i(x′)Hi

l (x
′, ε) . (2.41)

The coefficient βil defines the boundary condition and ensures that Hi
l (x, ε) = hl(kx) for

x > xm. The former is defined as:

βil = 1 + ik

∫ xm

0

dx′x′2 jl(kx
′)V i(x′)Hi

l (x
′, ε) . (2.42)

In analogy to the first term in Eq. (2.33), when a spherical scattering potential V i(x) is
present in the cell i, the single site Green function is given as a sum over L of products of
regular and irregular solutions:

Gs,i(~x, ~x ′, ε) = −ik
∑
L

YL(x̂)Ril(x<, ε)H
i
l (x>, ε)YL(x̂ ′) ,

=
∑
L

YL(x̂)Gs,i
l (x, x′, ε)YL(x̂ ′) .

(2.43)

Gs,i(~x, ~x ′, ε) is the single site ASA Green function. This form is valid for real energies.
However, for complex energies which are used in practice to reduce the numerical effort
(see discussion below), one must distinguish between the right and left solutions. In pres-
ence of non-collinear magnetism or spin-orbit interaction the right and left solutions are
not equivalent anymore, and the left must computed explicitly as discussed in Sec. 2.4.5.

The Green function has poles at the eigenenergies εi (see Eq. (2.20)). Therefore, the
evaluation of the energy integral given in Eq. (2.27) translates into summing up delta func-
tions numerically, this is very inconvenient and cannot be achieved. In order to overcome
this issue the energy integral must be extended to a contour integral in the upper half
(Im ε > 0) of the complex plane [97]. This extension is possible since the retarded Green
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function given in Eq. (2.20) is analytical in the upper complex plane (because for η → 0+

the poles of the Green function are shifted to lower half with Im ε < 0). Due to the imag-
inary part in the energy, the poles are broadened and fewer points are needed to perform
the energy integration (typically 40− 50 energy points). The drawback when using com-
plex energies is that the operator which defines the regular (or irregular) solutions (ε−H)
becomes non-Hermitian, thus, we must distinguish between the right and left solutions.
Nonetheless, in ASA and in absence of spin-orbit interaction or non-collinear magnetism
the left and right solutions are equivalent [96].

2.4.3 Multiple scattering problem
After solving the single site problem, we consider a collection of scattering centers. The
position of each scattering center is given by a lattice vector ~Xi. First, we assume that
the KKR Green function can be decomposed into an onsite and a multiple scattering part.
Second, we impose that the KKR Green function obeys the following Dyson equation:

G(~x+ ~Xi, ~x
′ + ~Xj , ε) =g(~x+ ~Xi, ~x

′ + ~Xj , ε) +
∑
k

∫
d~x ′′g(~x+ ~Xi, ~x

′′ + ~Xk, ε)

× V k(x′′ + ~Xk)G(~x ′′ + ~Xk, ~x
′ + ~Xj , ε) ,

(2.44)

where the sum on k includes all lattice positions. We can derive a Dyson equation for the
structural Green function GijLL′(ε), which involves the structure constant gijLL′(ε) and the
single site scattering matrices til(ε):

GijLL′(ε) = gijLL′(ε) +
∑
k

∑
L′′

gikLL′′(ε) t
k
l′′(ε)G

kj
L′′L′(ε) . (2.45)

The physical interpretation of Eq. (2.45) can be obtained when expanding the second term
on the right side into Born series. This shows that Eq. (2.45) describes a free particle
which encounters multiple scattering events at each cell i in presence of a potential V i(x),
where the information of the single site scattering is encoded in the til(ε) matrices. In
practice, the algebraic Dyson equation is solved by exploiting the translation symmetry of
the system. Assuming that the unit cell contains Nuc atoms, each atomic position in the
crystal is given by:

~Xiµ = ~Xi + ~Xµ . (2.46)

~Xi being the lattice vector and ~Xµ the vector connecting the basis atom to the lattice
position. The Fourier transform of Eq. (2.45) to k-space is performed:

GµνLL′(
~k, ε) =

∑
j

Gij,µνLL′ (ε) e−i~k·( ~Xi− ~Xj) . (2.47)

The choice of i is arbitrary in Eq. (2.47) since the system is periodic. The sum on j
includes all lattice positions. However, the introduction of repulsive potentials reduces the
spatial extension of Gij,µνLL′ (ε) as discussed in Ref. [98]. GµνLL′(~k, ε) is computed using a
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matrix inversion and Fourier transformed back to obtain Gij,µνLL′ (ε):

Gij,µνLL′ (ε) =
1

VBZ

∫
d~k

[(
1− t(ε) g(~k, ε)

)−1

g(~k, ε)

]µν
LL′

ei~k·( ~Xi− ~Xj) . (2.48)

VBZ is the volume of the Brillouin zone. g(~k, ε) is a matrix in (L,L′) and (µ, ν) subspaces,
it represents the Fourier transform of the structure constant, while t(ε) is a matrix diagonal
in (L,L′) for spherical potentials and diagonal in (µ, ν) as well, since it is a site diagonal
quantity. After computing the single site part of the Green function (see Sec. 2.4.2) and the
structural Green function given by Eq. (2.48), the full KKR Green function – including the
onsite and structural parts – is written similarly to the free electron case (see Eq. (2.33))
as:

G(~x+ ~Xi, ~x
′ + ~Xj , ε) =

∑
L

YL(x̂)Gs,i
l (x, x′, ε)YL(x̂ ′) δij

+
∑
LL′

YL(x̂)Ril(x, ε)G
ij
LL′(ε)R

j
l′(x
′, ε)YL′(x̂

′) ,
(2.49)

where Ril(x, ε) represents the regular solution of Eq. (2.38) in cell i.

2.4.4 Charge neutrality and Lloyd’s formula
The electron density obtained from Eq. (2.27) using the KKR Green function fails to pro-
duce the electron charge equalizing the nuclear charge Q. This is due to the introduction
of an Lmax cutoff in the sums of Eq. (2.49) (without the L-truncation i.e. Lmax → ∞,
n(~r) is normalized to Q). In practice, a finite value for Lmax is used which leads to a shift
of the Fermi energy. This procedure is not problematic for metals, however, for gapped
systems such as semiconductors, insulators or topological insulators, it can lead to a shift
of εF into the valence or conduction band making these materials metals [99]. This issue
can be solved using Lloyd’s formula [100, 101]. When restricting ourselves to the non
spin-polarized case, the integrated density of states (DOS), N(ε), reads:

N(ε) =

∫ ε

−∞
dε′n(ε′) , (2.50)

it can also be rewritten using the LLoyd’s formula as:

N(ε) = NF(ε) +
2

π
Im
∑
i

Tr lnαi(ε)− 2

π
Im Tr lnM(ε) . (2.51)

The first term on the right hand side of Eq. (2.51) represents the integrated DOS of free
electrons. The sum over i includes all the atoms contained in the system. The first trace is
over the L-index while the second one is over L and the cell index i. The second term on
the right hand is the contribution of the single site scattering to the integrated DOS, αi is
the so-called α-matrix, for spherical potentials it is given by:

αil(ε) = 1− ik

∫ xm

0

x′2dx′ hl(kx
′)V i(x′)Ril(x

′, ε) . (2.52)
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The last term on the right hand in Eq. (2.51) is the multiple scattering contribution to the
integrated DOS, M(ε) is the KKR matrix and is computed using the structure constants
and t-matrices:

M ij
LL′(ε) = δij δLL′ + gijLL′(ε) t

j
l′(ε) . (2.53)

The Lloyd’s formula provides the integrated DOS over all space, but the traces in Eq. (2.51)
still requires an Lmax cutoff. However, neglecting the matrix elements with L > Lmax in
Eq. (2.51) causes no problem, since this would mean replacing the potential by a projection
potential acting in the subspace L < Lmax [101]. Therefore, Eq. (2.51) procures the
correct integrated DOS when using a finite Lmax. The remaining task is now to use the
N(ε) obtained from Lloyd’s formula to renormalize the electron density computed from
the truncated KKR Green function. On the one hand, the electron density calculated from
the truncated Green function reads:

ñ(~x+ ~Xi) = − 2

π

∑
n

Im
[
ωn G̃(~x+ ~Xi, ~x+ ~Xi, εn)

]
. (2.54)

The factor 2 in the previous equation accounts for spin up and down. The sum over n
represents the discretized integral over energy using a contour in the complex plane as
discussed previously. ωn represent the complex energy integration weight for the energies
εn. Thus, the electronic charge obtained from the truncated Green function is then:

Q̃ =
∑
i

∫
d~x ñ(~x+ ~Xi) ,

= − 2

π

∑
i

∫
d~x

∑
n

Im
[
ωn G̃(~x+ ~Xi, ~x+ ~Xi, εn)

]
.

(2.55)

On the other hand, the normalized charge Q is:

Q =
∑
n

Im [ωn n(εn)] , (2.56)

where n(ε) = dN(ε)
dε and N(ε) is obtained using Eq. (2.51). Comparing Eq. (2.55) and

Eq. (2.56) gives the condition to ensures charge neutrality (i.e. Q̃ = Q) in the system:

− 2

π
λn

∫
V

d~x Im
[
ωn G̃(~x+ ~Xi, ~x+ ~Xi, εn)

]
= Im [ωn n(εn)] , (2.57)

where λn are coefficients introduced to renormalize the energy integration weights ωn in
order to agree with Lloyd’s formula and ensure charge neutrality.

2.4.5 Spin-orbit interaction in KKR
We now discuss the spin-orbit interaction (SOI) which, combined with the breaking of
inversion symmetry is at the core of most effects presented in this thesis, including the
Dzyaloshinskii-Moriya interaction, the Rashba effect and the edge states observed in topo-
logical insulators. The SOI can be obtained from an expansion of the Dirac equation and
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retaining terms up v2

c2 as shown in Ref. [102], v is the magnitude of the electron velocity
and c is the speed of light. The SOI Hamiltonian is given by:

HSOI = −α
2

2
~σ · (e ~E(~x)× ~p) . (2.58)

α ∼ 1
137 is the fine structure constant. Classically, the SOI can be viewed as an interaction

between the electron spin and the magnetic field emerging in its rest frame as a result of
its motion in an electric field ~E(~x) = − 1

e
~∇V (~x). HSOI is added to the left hand side of

Eq. (2.38) within each atomic cell i. For spherically symmetric potentials, Eq. (2.58) can
be simplified even further to show explicitly the orbital momentum ~L coupled to the spin:

HSOI =
α2

2
~σ ·
(

1

x

dV i(x)

dx
~x× ~p

)
,

=
α2

2x

dV i(x)

dx
~σ · (~x× ~p) ,

= λ(x) ~L · ~σ .

(2.59)

Where the prefactor λ(x) = α2

2x
dV i(x)

dx . When HSOI is included into Eq. (2.38), the
Lippman-Schwinger equation reads:(

Ri,↑↑lm (x, ε) Ri,↑↓lm (x, ε)

Ri,↓↑lm (x, ε) Ri,↓↓lm (x, ε)

)
=

(
jl(kx) 0

0 jl(kx)

)
+
∑
m′

∫
dx′x′2 gl(x, x

′, ε)(
V (x′)− im′ δm,−m′λ(x′) α−m,m′λ(x′)

α+
m,m′λ(x′) V (x′) + im′ δm,−m′λ(x′)

)(
Ri,↑↑lm′ (x

′, ε) Ri,↑↓lm′ (x
′, ε)

Ri,↓↑lm′ (x
′, ε) Ri,↓↓lm′ (x

′, ε)

)
.

(2.60)

In the previous equation the spin structure of Ri,σσ
′

lm (x, ε) is shown explicitly. The reg-
ular solutions are no longer diagonal in spin space and depend on m due to the SOI,
{α−m,m′ , α+

m,m′} are coefficients that couple regular solutions with different m values
(the expressions of these coefficients can be found in Ref. [103]). A possible solution
to Eq. (2.60) is to expand it in a Born series and solve iteratively. This is a good approach
for the regular solution, however, it fails for the irregular one since it diverges near the
nucleus. Therefore, Eq. (2.60) must be solved exactly, in practice this is done using a
Chebychev polynomial basis [96]. Another aspect that must be taken into account in pres-
ence of the SOI, is the left solutions which must be computed separately. Indeed, the right
and left solutions are defined as: {

(ε−H)R = 0 ,

R̄ (ε−H) = 0 .
(2.61)

The dependences on (r, l and ε) were omitted for simplicity. R and R̄ are matrices in spin
space denoting the right and left solutions, respectively. They can be expressed in terms
of the Lippmann-Schwinger equation as:{

R = j + gV R ,

R̄ = j + R̄ V g .
(2.62)
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j is the spherical Bessel functions and g is the free electron Green function. Eq. (2.62)
shows that when the potential V is diagonal in spin space the right and left solutions are
equivalent, however, the presence of the SOI or non-collinear magnetism creates non-zero
off-diagonal components in V , thus, the left solution differs from the right one and must
be explicitly computed.

As previously mentioned, in the presence of SOI, the left and right solutions are in-
equivalent, the single site Green function expansion in real spherical harmonics is non-
diagonal in m,Gs,i

lm,m′(x, x
′, ε) in cell i is rewritten as [96]:

Gs,i
lm,m′(x, x

′, ε) = −ik
[
Θ(x′ − x)Ri

lm(x, ε) H̄
i
lm′(x

′, ε)

+ Θ(x− x′)Hi
lm(x, ε) R̄

i
lm′(x

′, ε)
]

.
(2.63)

Where Θ(x) is the Heaviside step function andGs,i
lm,m′(x, x

′, ε) depends explicitly on the
left and right solutions. Then, the full KKR Green function reads [96]:

G(~x+ ~Xi, ~x
′ + ~Xj , ε) =

∑
LL′

YL(x̂)Gs,i
lm,m′(x, x

′, ε)YL′(x̂
′) δij δll′

+
∑
LL′

YL(x̂)Ri
lm(x, ε)Gij

LL′(ε) R̄
j
l′m′(x

′, ε)YL′(x̂
′) .

(2.64)

2.4.6 KKR in a projection basis

In the KKR method, the Green function is represented in a radial and energy depen-
dent basis, namely the regular and irregular solutions of the radial Schrödinger equation
Ri,σσ

′

l (x, ε) and Hi,σσ′

l (x, ε). Nonetheless, the Green function can be written in an en-
ergy independent basis which reproduces the ground state properties with reliability. In
practice, we build an energy independent radial basis starting from the normalized regular
solutions, chosen at a set of energies εb in the valence band:

φσilb(x) =
Ri,σσl (x, εb)√∫ xm

0
dxx2Ri,σσl (x, εb)

. (2.65)

φσilb(x) is the radial basis function for an atom i in absence of SOI with a value l of the
angular momentum quantum number and with a spin σ. Then for each i, l and spin channel
σ, we diagonalize separately the overlap matrix:

Oilbb′ =

∫ xm

0

dxx2 φσilb(x)φσilb′(x) , (2.66)

and keep the eigenvectors with the two largest eigenvalues, which define linear combina-
tions of the respective input radial basis functions, and are used to define the basis function
for atom i and angular momentum quantum number l. For our calculations, four energies
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are enough to give an accurate description of the Green function [41]. In the new con-
structed basis, we now write the Green function as:

Gσσ
′
(~x+ ~Xi, ~x

′ + ~Xj , ε) =
∑
LL′

YL(x̂)Gσσ
′

iL,jL′(x, x
′, ε)YL′(x̂

′) , (2.67)

with
Gσσ

′

iL,jL′(x, x
′, ε) =

∑
bb′

φσilb(x)Gσσ
′

iLb,jL′b′(ε)φ
σ′

jl′b′(x
′) . (2.68)

The spin dependence of the Green function is shown explicitly. The introduction of a
projection basis to simplify the KKR Green function is a very useful technique which
allows to separate between the radial and energy dependence of the Green function. This
proves to be very useful when computing more complicated quantities such as the Kohn-
Sham susceptibility discussed in Sec. 2.6.3 or electron-magnon self-energies [40, 104].

2.5 Magnetic anisotropy
In magnetic materials, the magnetization tends to align along a certain direction according
to its structural axes. This is due to the magnetic anisotropy energy. The direction which
minimizes the energy is called the easy-axis. The internal energy of the magnetic system
can be expanded with respect to θ and φ, which represent the polar and azimuthal angles of
the magnetization direction ~M , respectively. Usually the expansion is performed in terms
of the directional cosines (α1, α2, α3) = (sin θ cosφ, sin θ sinφ, cos θ) of ~M according
to the crystal axes. The crystal symmetry of the system imposes the form of the angular
dependence. Hexagonal lattices for example possess a high symmetry axis (along the
c-direction). For theses uniaxial systems, the internal energy is written as [105]:

εint = ε0 −K sin2 θ −K′ sin4 θ − ... . (2.69)

ε0 contains the isotropic energy contributions. K and K′ are called magnetic anisotropy
constants. The magnetic anisotropy in solids can have different origins, for example dipo-
lar interactions [106], the latter one is important in bulk materials. Another interaction
capable of generating a magnetic anisotropy is the SOI, it is called the magnetocrystalline
anisotropy. The presence of SOI leads to a breaking of the spin rotational symmetry, thus,
the spin magnetic moment favors a certain orientation in real-space.

In order to understand how the magnetocrystalline anisotropy originates from the SOI,
we proceed to second order perturbation theory in λ (λ is the SOI constant). The change
in the energy is given by [107]:

∆εi = λ 〈ψi| ~L · ~σ |ψi〉+ λ2
∑
j 6=i

| 〈ψi| ~L · ~σ |ψj〉 |2
εi − εj

. (2.70)

|ψi〉 and |ψj〉 represent the eigenstates of the unperturbed Hamiltonian associated with the
eigenenergies εi and εj , respectively. |ψi〉 are the eigenstates of the unperturbed Hamilto-
nian without SOI, thus, the orbital moment is quenched and 〈ψi| ~L |ψi〉 = 0 as discussed
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in Ref. [108]. This makes the first order contribution of the SOI vanish. Thus, after sum-
ming up over energies of all occupied states, we obtain the second order contribution of
the SOI to the total energy:

∆εSOI = λ2
∑
i∈occ

∑
j 6=i

| 〈ψi| ~L · ~σ |ψj〉 |2
εi − εj

, (2.71)

where the term inside the sum is odd when swapping indices i and j. Therefore, only the
coupling between occupied and unoccupied states will contribute to ∆εSOI:

∆εSOI = λ2
∑
i∈occ

∑
j∈unocc

| 〈ψi| ~L · ~σ |ψj〉 |2
εi − εj

, (2.72)

which gives important insights by relating the magnitude of the magnetic anisotropy en-
ergy (MAE), obviously it is proportional to λ2, to the details of the band structure [107].

2.5.1 Magnetic force theorem
In practice, the MAE of a magnetic system can be determined using DFT. It is obtained
from total energy differences. For a uniaxial system the internal energy is given by
Eq. (2.69). When restricting ourselves to second order in θ in the expansion, the MAE
reduces to the anisotropy constant K which is related to the total energy differences via:

K = εtot( ~M ‖ z)− εtot( ~M ‖ x) . (2.73)

The MAE is typically in the meV energy range, therefore, one needs to compute the total
energies with high accuracy. In practice, these calculations can be tedious since they
require a very high amount of k-points. Adding to that, two self-consistent calculations
must be performed (for ~M ‖ z and ~M ‖ x ). An alternative route is to use the so-called
magnetic force theorem [109, 110, 111], it allows to compute K only using one self-
consistent calculation. It states the following: if the change in the charge density n(~r) and
spin magnetization density ~m(~r) is small when rotating the spin magnetization (one shot
calculation) from the z-axis to the x-axis, then K is given by the band energy difference
between the two magnetic configurations:

K = εband( ~M ‖ z)− εband( ~M ‖ x) ,

=

∫ εF

−∞
dε (ε− εF) (n ~M‖z(ε)− n ~M‖x(ε)) .

(2.74)

Where n ~M‖z(ε) (n ~M‖x(ε)) represents the DOS of the system when the spin magnetic mo-
ment points along z-axis (x-axis). In this thesis, we compute the MAE for single magnetic
impurities embedded in a real-space cluster containing nonmagnetic atoms, therefore, we
can rewrite K as a sum over atomic cells:

K =
∑
i

∫ εF

−∞
dε (ε− εF) (ni~M‖z(ε)− n

i
~M‖x(ε)) ,

= KA +KC .

(2.75)
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The sum in Eq. (2.75) runs over all the atoms contained in the system with a local density
of states (LDOS) nk~M (ε). KA is the MAE at the impurity site, while KC is the MAE of
remaining atoms in the system. Thus, the MAE is a non-local quantity for which the
convergence regarding the cluster size must be achieved [112].

2.5.2 The torque method
As aforementioned, the MAE is typically in the meV range. When using band energy dif-
ferences discussed previously, the band energies must be computed with a high precision.
An alternative way to obtain the MAE within the framework of the magnetic force theo-
rem is to compute the magnetic torque. The magnetic torque acting on the spin magnetic
moment ~mj , which points along a direction ~ej is given by:

~Tj =
∂εband

∂~ej
,

= − 1

π

∑
i

Im Trσ

∫ εF

−∞
dε (ε− εF)

∂Gii(ε)

∂~ej
.

(2.76)

Where Gii(ε) is a matrix in spin-space, similar to the Green function given in Eq. (2.28)
with the real space dependence within each cell i integrated out:

Gii(ε) =

∫
d~x Gii(~x, ~x, ε) . (2.77)

The expression for the torque can be simplified further using the properties of the Green
function:

∂Gii(~x, ~x, ε)

∂~ej
=

∫
d~x ′Gij(~x, ~x

′, ε)
∂Hj

KS(~x ′)

∂~ej
Gji(~x

′, ~x, ε) . (2.78)

Hj
KS(~x) is the spin polarized Kohn-Sham Hamiltonian given in Eq. (2.17) for cell j. Com-

bining Eq. (2.76) and Eq. (2.78) the torque ~Tj is given by:

~Tj = − 1

π

∑
i

Im Trσ

∫ εF

−∞
dε

∫
d~x

∫
d~x ′(ε−εF)Gij(~x, ~x

′, ε)
∂Hj

KS(~x ′)

∂~ej
Gji(~x

′, ~x, ε) .

(2.79)
The previous expression can simplified further, once more we can use another property of
the Green function:

∂Gjj(~x
′, ~x ′, ε)

∂ε
= −

∑
i

∫
d~xGji(~x

′, ~x, ε)Gij(~x, ~x
′, ε) . (2.80)

The preceding identity is used to derive the Lloyd’s formula given in Eq. (2.51) as done in
Ref. [95]. After substitution, the torque takes the following form:

~Tj =
1

π
Im Trσ

∫ εF

−∞
dε

∫
d~x (ε− εF)

∂Gjj(~x, ~x, ε)

∂ε

∂Hj
KS(~x)

∂~ej
. (2.81)
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Using partial integration and since Gjj(~x, ~x, ε) vanishes when ε → −∞, the torque be-
comes:

~Tj = − 1

π
Im Trσ

∫ εF

−∞
dε

∫
d~xGjj(~x, ~x, ε)

∂Hj
KS(~x)

∂~ej
. (2.82)

From the previous equation, we can define the torque density at each point ~x in the cell i
as:

~tj(~x) = − 1

π
Im Trσ

∫ εF

−∞
dεGjj(~x, ~x, ε)

∂Hj
KS(~x)

∂~ej
. (2.83)

Considering the form ofHj
KS(~x) given in Eq. (2.17) and assuming the rigid spin approxi-

mation i.e. ~Bjxc(~x) = Bjxc(~x)~ek, the torque density reads:

~tj(~x) = − 1

π
Im Trσ

∫ εF

−∞
dεBjxc(~x) ~σGjj(~x, ~x, ε) . (2.84)

Finally, the magnetic torque acting on the spin moment ~Mj is expressed in terms ofBjxc(~x)
as:

~Tj =

∫
d~x ~tj(~x) ,

= − 1

π
Im Trσ

∫
d~x

∫ εF

−∞
dεBjxc(~x) ~σGjj(~x, ~x, ε) .

(2.85)

In equilibrium the spin moments point along a direction ~en (easy-axis). If we consider
uniaxial systems, the phenomenological form for the internal energy expanded to second
order in the magnetization reads [105]:

εint = ε0 +
K
M2

( ~M · ~en)2 + ... . (2.86)

When combining Eq. (2.86) and Eq. (2.76), we notice that the components of the torque
contain the MAE K. The torque ~T reads:

~T =
∑
i

~Ti = 2K (~eM · ~en)~en . (2.87)

The sum includes all the atoms of the system. The transversal part of the torque ~T trans is
written as:

~T trans = 2K
[
(~eM · ~en)~en − (~eM · ~en)2 ~eM

]
. (2.88)

When the easy axis is along the z-direction, then ~en = ~ez and assuming a 45◦ rotation in
the (xz)-plane away from the z-axis [105], the transversal part of the torque reads:

~T trans = (− K√
2
, 0,
K√
2

) , (2.89)

where ~eM = 1√
2
~ex + 1√

2
~ez . Furthermore, the torque acting on ~M has components along

x and z-axis but not along the y-axis. This is due to the fact that the easy-axis is along ~ez
(i.e. my = 0) and ~m is in the (xz)-plane (also my = 0) , thus, no torque along y-axis is
expected.
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2.6 Time-dependent density functional theory (TD-DFT)
Our aim is to compute the spin excitations spectrum of magnetic impurities embedded
in periodic hosts. Thus, we include an external time-dependent potential v(~r, t) into the
Hamiltonian, the system is then described by the time-dependent Schrödinger equation:

i
∂

∂t
ψ(~r1 σ1, ~r2 σ2, ...., ~rN σN , t) = Ĥ(t)ψ(~r1 σ1, ~r2 σ2, ...., ~rN σN , t) , (2.90)

where the many-body wave function is time-dependent, Ĥ(t) is a time-dependent Hamil-
tonian of the system similar to Ĥ from Eq. (2.2) with v(~r) is replaced by v(~r, t). The
one-to-one correspondence between the external potential v(~r, t) and the time-dependent
density was first proved by Runge and Gross [113]. The Runge-Gross theorem states the
following:“Two densities n(~r, t) and n′(~r, t) evolving from the same initial state ψ(t0) will
differ at any time t > t0 when evolving under two different Taylor expandable potentials
v′(~r, t) 6= v(~r, t) + C(t)”. C(t) is a purely time-dependent function. Therefore, we can
compute the time-dependent density of the many-body interacting system by solving the
time-dependent Kohn-Sham (TD-KS) equation:(

−1

2
~∇2
~r + vKS(~r, t)

)
φi(~r, t) = i

∂

∂t
φi(~r, t) . (2.91)

φi(~r, t) are the time-dependent Kohn-Sham orbitals which gives access to the time-dependent
density:

n(~r, t) =
N∑
i=1

|φi(~r, t)|2 . (2.92)

The time-dependent Kohn-Sham potential vKS(~r, t) is given similarly to the static one by:

vKS(~r, t) = v(~r, t) +

∫
d~r ′

2n(~r ′, t)
|~r − ~r ′| + vxc[n](~r, t) . (2.93)

The time-dependent Kohn-Sham formalism allows the exact computation of n(~r, t) for
an interacting system starting from the ground state with a density n0(~r). Once more,
vxc[n](~r, t) is unknown and needs to be approximated, the most obvious approximation is
to use the exchange-correlation functionals from static DFT and replace n0(~r) with n(~r, t):

vA
xc[n](~r, t) = vxc[n](~r)|n(~r,t) . (2.94)

This is known as the adiabatic approximation, which is valid when the perturbation is
”slowly” changing in time and the system stays in its instantaneous eigenstate then vxc[n](~r, t)
depends only on the density at time t. In practice, the most used approximation is the adia-
batic LDA (ALDA). For spin-polarized systems the time dependence affects the magnetic
part of the exchange-correlation as well (i.e. ~Bxc[n, ~m](~r, t)) and in the adiabatic approx-
imation it reads:

~BA
xc[n, ~m](~r, t) = ~Bxc[n, ~m](~r)

∣∣∣
n(~r,t),~m(~r,t)

. (2.95)

Similarly to the static case (LSDA), in the adiabatic LSDA the exchange-correlation mag-
netic field points always in the direction of the magnetization ~m(~r, t).
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2.6.1 Linear response theory within TD-DFT
The dynamics of the electronic many-body system can described by the TD-KS equation
as discussed previously. However, when the deviations from the ground state are small,
the dynamics of our system can be captured using linear response theory. In the following
we briefly discuss the basics of linear response theory. We consider a system described by
the time-dependent Schrödinger equation:

i
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 ; Ĥ(t) = Ĥ0 + δv̂(t) . (2.96)

Ĥ0 is a time-independent Hamiltonian and δv̂(t) is a small external perturbation which is
only non-zero for t > t0, it couples to an operator B̂ via:

δv̂(t) = B̂ δζ(t) . (2.97)

δζ(t) is a pure time-dependent function. The expectation value on an operator Â is given
by:

〈Â〉(t) = 〈ψ(t)| Â |ψ(t)〉 . (2.98)

|ψ(t)〉 is the solution of Eq. (2.96) and can be written as: |ψ(t)〉 = e−iĤ0(t−t0) U(t) |ψ(t0)〉.
|ψ(t0)〉 is the initial wave function at t0 and U(t) is the time evolution operator which can
be expanded to first order in δζ(t) (small perturbation):

U(t) ∼ 1− i

∫ t

t0

dt′ B̂(t′) δζ(t′) + ... . (2.99)

Plugging back this expansion into Eq. (2.98) and keeping only linear terms in δζ(t), we
get for the expectation value of Â:

〈Â〉(t) = 〈ψ(t0)| Â(t) |ψ(t0)〉− i

∫ t

t0

dt′ 〈ψ(t0)| [Â(t), B̂(t′)] |ψ(t0)〉 δζ(t′) . (2.100)

Where Â(t) = eiĤ0(t−t0) Â e−iĤ0(t−t0) is the Heisenberg representation of the operator
Â. The change in the expectation value of Â due to δv̂(t) is:

δ〈Â〉(t) = 〈Â〉(t)− 〈ψ(t0)| Â |ψ(t0)〉 ,

= −i

∫
dt′Θ(t− t′) 〈ψ(t0)| [Â(t), B̂(t′)] |ψ(t0)〉 δζ(t′) ,

=

∫
dt′χAB(t− t′) δζ(t′) .

(2.101)

Θ(t) is the Heaviside step function and χAB(t− t′) is the response function of the system
to the external perturbation δζ(t′). We can also see that δ〈Â〉(t) depends on all the δζ(t′)
functions for t′ < t. By taking the Fourier transform of Eq. (2.101) we simply get a
convolution:

δ〈Â〉(ω) = χAB(ω) δζ(ω) , (2.102)
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where the perturbation has a frequency ω. χAB(ω) can be written using the complete
eigenbasis (

∑
n |ψn〉 〈ψn| = 1) of Ĥ0 and its eigenvalues (Ĥ0 |ψn〉 = εn |ψn〉):

χAB(ω + iη) =
∑
mn

[f(εn)− f(εm)]
ÂnmB̂mn

ω − (εm − εn) + iη
. (2.103)

The previous equation represents the Lehmann representation of χAB(ω+iη). η is a small
positive quantity, f(ε) is the Fermi-Dirac distribution and Âmn = 〈ψm| Â |ψn〉. Using the
spectral representation of the single-particle Green function given in Eq. (2.20) when A
and B are local operators, the real-space representation of χAB(ω + iη) reads:

χAB(~r, ~r ′, ω + iη) =− 1

π

∫
dε f(ε) Tr

(
ÂG(~r, ~r ′, ε+ ω + iη) B̂ ImG(~r ′, ~r, ε+ i0+)

)
− 1

π

∫
dε f(ε) Tr

(
Â ImG(~r, ~r ′, ε+ i0+) B̂ G(~r ′, ~r, ε− ω − iη)

)
.

(2.104)

We now come back to the TD-DFT formulation of linear response theory. In the presence
of a small time-dependent external electrostatic potential δvn(~r, t) and external magnetic
field δ ~B(~r, t), the central quantities in TD-DFT namely n(~r, t) and ~m(~r, t) can be written
as: {

n(~r, t) = n0(~r) + δn(~r, t) ,

~m(~r, t) = ~m0(~r) + δ ~m(~r, t) .
(2.105)

n0(~r) and ~m0(~r) are the ground state electron and magnetization density. The Fourier
transforms of δn(~r, t) and δ ~m(~r, t) in linear response are written as:

δnα(~r, ω) =
∑
β

∫
d~r ′ χ0

αβ(~r, ~r ′, ω) δveff,β(~r ′, ω) ,

{α, β} = {x, y, z, n} .

(2.106)

δ~n(~r, t) and δ~veff(~r
′, t′) are column vectors defined as:

δ~n(~r, ω) =


δmx(~r, ω)
δmy(~r, ω)
δmz(~r, ω)
δn(~r, ω)

 ; δ~veff(~r, ω) =


δBeff,x(~r, ω)
δBeff,y(~r, ω)
δBeff,z(~r, ω)
δveff,n(~r, ω)

 (2.107)

and χ0(~r, ~r ′, t− t′) is the Kohn-Sham response function given by a 4× 4 tensor:

χ0 =


χ0
xx χ0

xy χ0
xz χ0

xn

χ0
yx χ0

yy χ0
yz χ0

yn

χ0
zx χ0

zy χ0
zz χ0

zn

χ0
nx χ0

ny χ0
nz χ0

nn

 . (2.108)

We omitted the position (~r, ~r ′) and the time dependences in χ0 for simplicity. Its compo-
nents are given by Eq. (2.104), where the operators {Â, B̂} are replaced by {Ŝα, Ŝβ} with
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Ŝα = σα for α ∈ {x, y, z} and Ŝn = 12 for the electron density. Besides the external
time-dependent perturbation δ~veff(~r, ω) contains a many-body contribution accounting for
the change of vxc(~r, ω) and ~Bxc(~r, ω):

δveff,α(~r, ω) = δvα(~r, ω) + δα,n

∫
d~r ′

2δn(~r ′, ω)

|~r − ~r ′| + δvxc,α(~r, ω) , (2.109)

where the first term represents the external contribution δ~v(~r, ω) = {δ ~B(~r, ω), δvn(~r, ω)}.
The second term from the previous equation is the Hartree response, while the last one
represents the perturbation in the exchange-correlation potential:

δvxc,α(~r, ω) =
∑
β

∫
d~r ′Kxc

αβ(~r, ~r ′, ω) δnβ(~r ′, ω) . (2.110)

Kxc
αβ(~r, ~r ′, ω) is the Fourier transform of the exchange-correlation kernel which is deter-

mined by the ground state electron and magnetization density:

Kxc
αβ(~r, ~r ′, ω) =

δvxc,α(~r, ω)

δnβ(~r ′, ω)

∣∣∣∣
n0,~m0

. (2.111)

δnα(~r, ω) can also be related to the external perturbation δ~v(~r, ω) using the enhanced
susceptibility χαβ(~r, ~r ′, ω) via:

δnα(~r, ω) =
∑
β

∫
d~r ′ χαβ(~r, ~r ′, ω) δvβ(~r ′, ω) . (2.112)

χαβ(~r, ~r ′, ω) contains poles at the excitations energies of the interacting system. When
combining Eq. (2.106), Eq. (2.112) and Eq. (2.109), one can show that χαβ(~r, ~r ′, ω) is
related to χ0

αβ(~r, ~r ′, ω) by a Dyson-like equation:

χαβ(~r, ~r ′, ω) = χ0
αβ(~r, ~r ′, ω) +∑

γµ

∫
d~r1 d~r2 χ

0
αγ(~r, ~r1, ω)

(
Kxc
γµ(~r1, ~r2, ω) +

δγn δµn
|~r1 − ~r2|

)
χµβ(~r2, ~r

′, ω) .

(2.113)

In presence of the SOI or magnetic non-collinearity, the longitudinal and transversal blocks
of χ0

αβ(~r, ~r ′, ω) are coupled (due to the spin structure of the Green function), therefore,
one must solve Eq. (2.113) including all the components. Within the ALDA,Kxc

αβ(~r, ~r ′, ω)
is frequency-independent and local in space, and when the spin magnetization density is
along the z-axis (i .e. ~Bxc(~r) = Bxc(~r)~ez) the transverse part of the exchange-correlation
kernel (Kxc

⊥ = Kxc
xx = Kxc

yy) is simply written as:

Kxc
⊥ (~r, ~r ′, ω) = Kxc

⊥ (~r) δ(~r − ~r ′) ,

=
2Bxc(~r)

m(~r)
δ(~r − ~r ′) .

(2.114)
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If the coupling between the longitudinal and the transversal part is small then one can
solve Eq. (2.113) for each block separately. When ~m(~r) ‖ z-axis, it is advantageous to

introduce the {+,−} basis using the ladder operators Ŝ± =
Ŝx±iŜy

2 instead of using the
{x, y} basis. The transverse Kohn-Sham response in the {+,−} basis χ0,T

{+,−} reads:

χ0,T
{+,−} =

(
1
2

i
2

1
2 − i

2

)(
χ0
xx χ0

xy

χ0
yx χ0

yy

)(
1
2

1
2

i
2 − i

2

)
,

=

(
χ0

++ χ0
+−

χ0
−+ χ0

−−

)
.

(2.115)

From the previous equation, the spin-flip Kohn-Sham response function χ0
+−(ω) is defined

as:
χ0

+−(ω) =
1

4
(χ0
xx(ω)− iχ0

xy(ω) + iχ0
yx(ω) + χ0

yy(ω)) . (2.116)

The radial dependencies were omitted for simplicity.

2.6.2 Spin splitting sum rule
In absence of SOI or an external magnetic field, the global SU(2) invariance leads to a
Goldstone mode at zero frequency, i.e. since there are no anisotropies any transversal
perturbation should lead to an infinite response χ+−(ω = 0) → ∞. Numerically small
inaccuracies occur in χ0

+−(ω) and Kxc
⊥ (~r) shifting the pole of the susceptibility to a finite

frequency in the meV range comparable to the gap opening due to SOI, and we must use
a sum rule to fix this inconsistency [40, 41].

When the magnetization density is along the z-axis it connects to Bxc(~r), SOI and
external magnetic field via:

mz(~r) = − 1

π
Im Trσ

∫ εF

−∞
dε

∫
d~r1

∫
d~r2G↑↑(~r, ~r1, ε) ∆(~r1, ~r2, ε)G↓↓(~r2, ~r, ε) .

(2.117)
∆(~r, ~r ′, ε) is an energy-dependent splitting related to the Kohn-Sham Hamiltonian of
Eq. (2.17) which in presence of SOI and an external magnetic field reads:

HKS(~r) =
(
−~∇2

~r + vKS(~r)
)

12 + ~Bxc(~r) · ~σ + λ(r) ~L · ~σ + ~Bext · ~σ . (2.118)

∆(~r1, ~r2, ε) is given in terms ofHKS(~r) and (ε−Hσσ
KS (~r)) G̃σσ(~r, ~r ′, ε) = δ(~r − ~r ′) as:

∆(~r, ~r ′, ε) =
(
H↑↑KS(~r)−H↓↓KS(~r)

)
δ(~r − ~r ′)

+H↑↓KS(~r) G̃↓↓(~r, ~r
′, ε)H↓↑KS(~r ′)

−H↓↑KS(~r) G̃↑↑(~r, ~r
′, ε)H↑↓KS(~r ′) .

(2.119)

Using Eq. (2.117) and Eq. (2.119), we can identify separately the different contributions
to mz(~r) from Bxc(~r), SOI and the external magnetic field:

mz(~r) = mxc
z (~r) +mSOI

z (~r) +mext
z (~r) . (2.120)
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The contribution of the exchange-correlation magnetic field to the magnetization mxc
z (~r)

reads:

mxc
z (~r) = − 2

π
Im
∫ εF

−∞
dε

∫
d~r ′G↑↑(~r, ~r

′, ε)Bxc(~r
′)G↓↓(~r

′, ~r, ε) , (2.121)

which interestingly can be reformulated using the static spin-flip Kohn-Sham susceptibility
χ0

+− = 1
4 (χ0

xx − iχ0
xy + iχ0

yx + χ0
yy) as:

mxc
z (~r) = 2

∫
d~r ′ χ0

+−(~r, ~r ′, ω = 0)Bxc(~r
′) .

=

∫
d~r ′ χ0

+−(~r, ~r ′, ω = 0)Kxc
⊥ (~r ′)mz(~r

′) .

(2.122)

The previous equation represents the magnetization sum rule, in practice first mxc(~r) is
computed using Eq. (2.121) then Eq. (2.122) is inverted to compute Kxc

⊥ (~r), this proce-
dure enforces by construction the Goldstone mode at zero frequency in absence of SOI or
external fields. In order to illustrate this, we omit the real-space dependence, Eq. (2.122)
reads then:

Kxc
⊥ =

(
χ0

+−(ω = 0)
)−1

mxc
z

mxc
z +mSOI

z +mext
z

. (2.123)

In absence of SOI and external magnetic fields, Kxc
⊥ is simply given by:

Kxc
⊥ =

(
χ0

+−(ω = 0)
)−1

. (2.124)

Furthermore, the transversal block in χ(ω) decouples from the rest of the elements and
χ+−(ω) reads:

χ+−(ω) =
χ0

+−(ω)

1−Kxc
⊥χ

0
+−(ω)

. (2.125)

When plugging Kxc
⊥ into the previous equation, we see clearly that χ+−(ω) diverges at

ω = 0.

2.6.3 Taylor expansion of the Kohn-Sham susceptibility
In practice χ0

αβ(~r, ~r ′, ω) is computed using Eq. (2.104) and the Kohn-Sham Green func-
tions in the projection basis defined in Sec. 2.4.6. In this basis the Kohn-Sham response
function reads:

χ0
αβ(~r, ~r ′, ω) =

∑
L1s1b1...

YL1
(r̂)YL2

(r̂)φs1il1b1(r)φs2il2b2(r)

× χ0,s1s2s3s4
αβ,iL1L2b1b2,jL3L4b3b4

(ω)φs3jl3b3(r ′)φs4jl4b4(r ′)YL3
(r̂ ′)YL4

(r̂ ′) .

(2.126)

χ0
αβ(~r, ~r ′, ω) requires the computation of the Kohn-Sham Green function for each fre-

quency which can be very time-consuming. Nonetheless, for the frequency range of inter-
est (meV) the Kohn-Sham susceptibility is almost linear in frequency, therefore, one can
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perform a Taylor expansion for the projected Kohn-Sham Green function around ω = 0:

Gσσ
′

iLb,jL′b′(ε+ ω + iη) =Gσσ
′

iLb,jL′b′(ε+ iη) + ω
d

dε
Gσσ

′

iLb,jL′b′(ε+ iη)

+
ω2

2

d2

dε2
Gσσ

′

iLb,jL′b′(ε+ iη) + ... .

(2.127)

Plugging back the previous equation into Eq. (2.67), we obtain the Taylor expansion in
frequency for the Kohn-Sham Green function G(~r, ~r ′, ε+ ω + iη). The latter one is then
inserted to Eq. (2.104) providing a Taylor expansion for the Kohn-Sham susceptibility:

χ0
αβ(~r, ~r ′, ω) = χ0

αβ(~r, ~r ′, 0) + ω χ0,′
αβ(~r, ~r ′) + ω2 χ0,′′

αβ (~r, ~r ′) + ... . (2.128)

The first term on the right hand side is the static Kohn-Sham susceptibility. The second
term gathers elements of the form G(ε) d

dεG(ε), while the last term gathers elements of
the form G(ε) d2

dε2G(ε). All these terms are integrated over energy as well.

2.6.4 Mapping TD-DFT into the Landau-Lifshitz-Gilbert equation
In order to get more insights into the magnetization dynamics, we connect the magnetic
susceptibility obtained within TD-DFT to the phenomenological Landau-Lifshitz-Gilbert
(LLG) equation [114]. We use the generalized formulation of the LLG equation which
includes a tensorial damping G, the impact of the damping on the magnetization precession
is shown in Fig. 2.1a, as well as nutation effects via the nutation tensor I, which are shown
in Fig. 2.1b. The nutation effects are important at high frequencies [115]. The equation
governing the precession of the spin magnetic moment ~M is given by:

d ~M

dt
= −γ ~M ×

(
~Beff + G · d ~M

dt
+ I · d2 ~M

dt2

)
, (2.129)

~M is the spin magnetic moment obtained after integrating the spin magnetization density
~m(~r) given in Eq. (2.29) over the cell containing the magnetic atom:

~M =

∫
d~r ~m(~r) . (2.130)

γ is the gyromagnetic ratio (γ = 2 in atomic units) and ~Beff is the effective field acting
on the magnetization. It contains two contributions, external and internal, the latter one is
arising from the MAE:

~Beff = ~Bext + ~Ba , ~Ba = −∂εint

∂ ~M
= − 2K

M2
( ~M · ~en)~en . (2.131)

~en is the easy axis of ~M and εint is the phenomenological form for the internal energy
given in Eq. (2.86). We now consider that the magnetic moment points along the z-axis
(i.e. ~en = ~ez) and that ~Bext is a small time-dependent transverse magnetic field:

~Bext(t) = bx(t)~ex + by(t)~ey ; with {bx(t), by(t)} � | ~Ba| . (2.132)
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Figure 2.1: Precession of the spin magnetic moment ~M around the effective field ~Beff. a) Damping
of the precession. b) Nutation of the spin magnetic moment.

Therefore, ~M(t) acquires small transverse components:

~M(t) = Mx(t)~ex +My(t)~ey +M ~ez (2.133)

Plugging Eq. (2.132) and Eq. (2.133) into Eq (2.129) under the following assumptions:

• {Mx,My} �M allowing the linearization of Eq. (2.129).

• In the ground state the torque between the effective field and the magnetization must
be zero:

(
M~ez × ~Ba

)
= 0.

One can show that the Fourier transform of Eq. (2.129) for the transverse components of
the magnetization can be written as:

∑
β=x,y

(
Ba
z

M
δαβ +

iω

γM

∑
µ

εαβµ + iω Gαβ + ω2 Iαβ
)
Mβ(ω) = bα(ω) . (2.134)

εαβµ is the Levi-Civita tensor. The previous equations allow a connection between the lin-
earized LLG equation and the transverse magnetic susceptibility obtained from Eq. (2.113)
with the ~r-dependencies integrated out.∑

β=x,y

(
χLLG
αβ (ω)

)−1
Mβ(ω) = bα(ω) , (2.135)

where χLLG
αβ (ω) is the magnetic susceptibility in the LLG model. The damping and nu-

tation are rank-2 tensors that can be decomposed into a symmetric part (labeled with the
superscript s) and an anti-symmetric part (labeled with the superscript a). For systems
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with uniaxial symmetry (such as C3v), the damping tensor has the following form:

Gs = − 1

γM

 Gs‖ 0 0

0 Gs‖ 0

0 0 Gs⊥

 ; Ga =
1

γM

 0 Ga⊥ −Ga‖
−Ga⊥ 0 Ga‖
Ga‖ −Ga‖ 0

 .

(2.136)
And similarly for the nutation tensor:

Is = − 1

γM

 Is‖ 0 0

0 Is‖ 0

0 0 Is⊥

 ; Ia =
1

γM

 0 Ia⊥ −Ia‖
−Ia⊥ 0 Ia‖
Ia‖ −Ia‖ 0

 .

(2.137)
A similar decomposition is done for the magnetic interactions tensor discussed in Sec. 3.5.1.
Combining Eq. (2.134) and Eq. (2.135), the transverse components of the damping and nu-
tation tensors can be extract from the transverse dynamical magnetic susceptibility com-
puted within TD-DFT:{(

χLLG
xx (ω)

)−1
= − 2K

M2 − iω
γM Gs‖ − ω2

γM Is‖ .(
χLLG
xy (ω)

)−1
= iω

γM (1 + Ga⊥) + ω2

γM Ia⊥ .
(2.138)

The spin-flip magnetic susceptibility in the LLG model χLLG
+− (ω) is given in terms of the

MAE, damping and nutation transverse components as:

χLLG
+− (ω) =

1

2

Mγ

− 2Kγ
M − (1 + Ga⊥ + iGs‖)ω + (−Is‖ + iIa⊥)ω2

. (2.139)

Note that the sign convention chosen in LLG for the perturbation Hamiltonian is different
compared to the one used in TD-DFT, therefore, χLLG

αβ (ω) = −χαβ(ω).

2.6.5 Zero-point spin-fluctuations
Previously, we have discussed the transverse dynamical magnetic susceptibility. It turns
out that the knowledge of the later one gives access to the so-called zero-point spin-
fluctuations (ZPSF) , which are quantum fluctuations present at zero temperature capable
of altering the magnetic properties of the system. There is an analogy with the quantum
harmonic oscillator where the vibrational energy is εν = ω0

(
ν + 1

2

)
. ν is an integer

number labeling the quantized energy levels and ω0 is the vibration frequency. At zero
temperature (ground state) ν = 0, the remaining energy ε0 = ω0

2 is attributed to these
zero-point fluctuations. For the quantum harmonic oscillator, ZPSF are present because
the momentum operator ~p and the position operator ~x do not commute. This is a conse-
quence of the Heisenberg uncertainty principle. The fluctuations of an observable Â from
equilibrium are contained in the dynamical structure factor:

SÂÂ†(ω) =
1

2π

∫
dt 〈Â(t)Â†〉 eiωt ,

= 〈Â〉2 δ(ω) +
1

2π

∫
dt 〈δÂ(t) δÂ†〉 eiωt .

(2.140)
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δÂ represents the amount of fluctuations of the observable Â (i.e. Â = 〈Â〉 + δÂ).
SÂÂ†(ω) is related to the dissipative part of the response function ImχÂÂ†(ω) by the
so-called fluctuation-dissipation theorem [116], which at zero temperature reads:

SÂÂ†(ω) = − 1

π
ImχÂÂ†(ω) . (2.141)

We consider only the transverse spin-fluctuations since it has been shown for several mag-
netic adatoms on metallic surfaces in Ref. [42] that the longitudinal fluctuations are one
order of magnitude smaller than the former ones. The transverse dynamical structure fac-
tor is defined as:

S⊥(ω) = − 1

π
(Imχxx(ω) + Imχyy(ω)) . (2.142)

Assuming that the spin moment is along the z-axis, 〈Ŝx〉 = 〈Ŝy〉 = 0. Then, the vari-
ance of the transversal spin-fluctuations in equilibrium ξ2

⊥ is given by the integral over all
frequencies of S⊥(ω):

ξ2
⊥ = − 1

π

∫ +∞

0

dω (Imχxx(ω) + Imχyy(ω)) ,

= − 1

π

∫ +∞

0

dω Imχ⊥(ω) ,

(2.143)

where Imχ⊥(ω) = Imχxx(ω)+ Imχyy(ω) defines a form of the transverse response func-
tion which is important for ZPSF (note that it is different from χ+−(ω)). The frequency
integral in Eq. (2.143) goes up to +∞, for large frequencies ω � ωmax, Imχ⊥(ω) ∝ 1

ω2

where ωmax represents the resonance frequency (see Sec. 4.7.2). This allows to introduce a
cutoff frequency, ωc, considering that with TD-DFT one has access only to a finite range of
frequencies. For ω > ωc, we assume the following for the imaginary part of the transversal
response function:

Imχ⊥(ω) =
ω2

c

ω2
Imχ⊥(ωc) . (2.144)

ξ2
⊥ is then given by a sum of two terms, the main contribution coming from the reso-

nance in Imχ⊥(ω) and a smaller contribution originating from the tail of Imχ⊥(ω) at high
frequencies.

2.6.6 Renormalization of the magnetic anisotropy energy

It has been shown that the ZPSF introduced previously are important for magnetic impu-
rities [42]. These ZPSF make the magnetic moments less stable regarding external pertur-
bations, this leads to a lowering of the MAE barrier. In order to estimate this reduction,
we consider a magnetization ~M(~r) with an easy axis in an arbitrary direction ~en and ap-
ply similar principles than those used in the spin-fluctuation theory of Moriya [117]. The
magnetization is expressed as

~M(~r) = ~Meq + δ ~M(~r) , (2.145)
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where ~Meq is the equilibrium magnetization and δ ~M(~r) represents the local fluctuations
of ~M(~r) at each point ~r. By symmetry considerations one can postulate [118]:∫

Vm

d~r
(
δ ~M(~r)

)n
=

{
〈δ ~Mn〉 for n even ,

0 for n odd .
(2.146)

We are interested in the influence of spin fluctuations on the magnetic anisotropy, which
involves the square of the magnetization:

〈 ~M2〉 =〈
(
~Meq + δ ~M

)2

〉 = ~M2
eq + 〈δ ~M2〉 . (2.147)

We now include the contribution of the ZPSF into the phenomenological form of the in-
ternal energy and Eq. (2.86) is rewritten as:

εsf = ε0 +
K
M2
〈( ~M · ~en)2〉+ ... . (2.148)

εsf is the internal energy in presence of ZPSF. Furthermore, we separate the longitudinal
and transversal contributions of δ ~M , therefore, we introduce δM ′i as its components in
the local frame of the magnetization ~M which points in an arbitrary direction ~eM in the
(xz)-plane with an angle θ away from z-axis:

δ ~M =
∑

i=x,y,z

δM ′i ~ei ,

= δM ′x(cos θ ~ex − sin θ ~ez) + δM ′y ~ey + δM ′z(sin θ ~ex + cos θ ~ez) .

(2.149)

~e ′i are the basis vectors in the rotated frame of the magnetization. {δM ′x, δM ′y} represent
the transversal fluctuations, while, δM ′z account for the longitudinal ones within the local
spin frame of reference. Assuming that the easy axis of ~M is along the z-direction and
using Eq. (2.149), the internal energy can be written as:

εsf(θ) = ε0 +
K
M2
〈( ~M · ~ez)2〉 ,

= ε0 +
K

~M2
eq +

∑
i δM

′ 2
i

(
( ~M2

eq + δM ′ 2z ) cos2 θ + δM ′ 2x sin2 θ
)

.
(2.150)

The renormalized MAE anisotropy due to ZPSF, Ksf, is given by the difference between
the internal energy when ~M ‖ ~ez and ~M ‖ ~ex, respectively:

Ksf = εsf(0)− εsf(π/2) ,

= K
(

1− 2δM ′ 2x + δM ′ 2y
~M2

eq +
∑
i δM

′ 2
i

)
.

(2.151)

For systems without in-plane anisotropy, δM ′x = δM ′y = δM ′⊥ and considering that the
longitudinal fluctuations are one order of magnitude smaller than the transversal ones:

Ksf = K
(

1− 3δM ′ 2⊥
~M2

eq + 2δM ′ 2⊥

)
. (2.152)

The presence of the fluctuations leads to a reduction of the MAE barrier since δM ′ 2⊥ > 0
affecting the magnetic stability of the system.
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2.7 Technical aspects of the KKR codes and new imple-
mentations

2.7.1 KKR codes available in Jülich

In practice, we use the KKR codes available in Jülich. In order to describe the peri-
odic host systems discussed in the thesis, we used the KKR-Jülich-Münich code (KKR-
JM). The program starts from atomic potentials embedded in a free electron gas. The
atomic potentials and the geometrical construction of the system are created using a utility
called the Voronoi code. The KKR-JM code includes the spin-orbit interaction (SOI) self-
consistently in the atomic sphere approximation and in the full potential (FP) approach. It
solves the Lippmann-Schwinger equation exactly by performing an inversion in a Cheby-
chev polynomial basis [96]. The KKR-JM code is parallelized over energies and atoms for
the solution of the single site problem (see Eq. (2.39)). The multiple scattering problem is
also solved in parallel over energies and k-points (see Eq. (2.48)). The code uses different
levels of parallelization (MPI, OpenMP and hybrid).

Once the host system is generated self-consistently, we use the KKR-impurity code
to perform real space calculations. The impurity code employs a set of Green functions
and t-matrices computed from the host system within a finite region in space called impu-
rity cluster. The latter one contains all the atoms affected by the embedded defect. The
KKR-impurity code uses the Dyson equation shown in Eq. (2.23) to embed impurities (or
clusters of impurities) self-consistently and compute their ground state properties (charge,
spin moment, orbital moment and density of states). The impurity code has an MPI paral-
lelization over the energies.

To access the dynamical properties of the system an extension to TD-DFT is required.
There is a separate code available which grants access to the magnetic response functions
to external time-dependent magnetic fields (using linear response TD-DFT), it received the
appellation KKR-susc code. It is attached to the KKR-impurity code and uses its inputs.
The KKR-susc code introduces the projection basis discussed in Sec. 2.4.6. However,
the available version of the KKR-susc code was interfaced with an older version of the
impurity code which does not include the SOI from the host. The SOI is introduced self-
consistently in the impurity cluster within the projection basis scheme. This approach is
not suitable to treat system with large SOI where the details of the band structure are of
crucial importance, this is the case for topological insulators which are materials of interest
in this thesis.

2.7.2 New implementations in the KKR-impurity and KKR-susc codes

One of the main goals of the thesis was to compute the response of magnetic impurities
subjected to external time-dependent magnetic fields. These impurities are embedded in
topological insulators where the SOI is strong. Therefore, it has to be included in the host
system self-consistently, then in the impurity cluster using the KKR-impurity code and
finally in the KKR-susc code. In order to fulfill these requirements, several changes had to
be made on the KKR-impurity code as well as on the KKR-susc code. The task consisted
of writing a new interface. The essential new implementations are listed in the following:
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Generalization of the Radial meshes

As mentioned previously, the old version of the KKR-susc code was interfaced with an
older KKR-impurity code. This old version had only one radial mesh panel within the ASA
approximation. However, the most recent version of the KKR-JM code and impurity code
requires a more general radial mesh with different panels. These are needed because this
recent version has a full potential extension, where at edges of the atomic cell the charge
density presents kinks and sharp features that need to be integrated over different panels.
First, we transmitted the information on the panels from the KKR-impurity code to the
KKR-susc code and created new variables to handle the panels. Second, we generalized
the integration routines in the KKR-susc code to include more than one panel. Third, every
routine in the code where a real space integration or derivation is performed was updated
to include more than a single panel.

Handling off-diagonal elements

In practice, the regular solutions and the onsite Green function are the quantities that are
projected on the basis defined in Sec. 2.4.6. The old version of the impurity code does
not include SOI and also does not handle non-collinear magnetism, the regular solutions
and the onsite Green function are diagonal in spin space. Thus, only the spin diagonal
components were projected and transmitted to the KKR-susc code. In presence of SOI
from the host, several changes must be made. First, due to the presence of SOI from the
host, the regular solutions and the onsite Green function acquire off-diagonal elements
in spin (Rσσ

′

lm (r) 6= 0), second, they also depend on m as can be seen from Eq. (2.60).
Third, the left solutions discussed previously are not equivalent to the right ones in pres-
ence of SOI. Therefore, new projection routines that includes spin off-diagonal elements,
m-dependent projection coefficients, left solutions have been implemented. In presence
of non-collinear magnetism and SOI from the host further changes are required, since the
KKR-impurity code computes the regular solutions and onsite Green function in the lo-
cal frame of the magnetization, thus, the projection coefficients are obtained in the local
frame. Nonetheless, the projection coefficients are assembled together with the structural
Green function which is in the global frame. Thus, new routines transforming the regular
solutions (right and left) and the onsite Green function from the local spin frame of ref-
erence to the global one had been implemented. Furthermore, in the old version of the
KKR-JM code the structural Green function was generated for collinear systems without
SOI, therefore, once more only the spin diagonal elements where required in the KKR-
susc code. For the new version of the code, new routines handling and transmitting the
structural Green function with the spin off-diagonal elements were implemented as well.

Energy parallelization of the KKR-susc code

The new solver that includes SOI interaction from the host and in the impurity code is
very accurate. However, in practice it solves the Lippmann Schwinger equation given by
Eq. (2.60) in a Chebychev polynomial basis, which is numerically expensive, therefore,
the KKR-impurity code is parallel over energies. We made use of the existing energy
parallelization in the KKR-impurity code to perform the projections in parallel. Nonethe-
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less, the parallel energy distributions do not conform with the energy integrals used in the
KKR-susc code to compute the magnetic susceptibility (see Eq. (2.104)). In oder to over-
come this issue, the code was splitted into two parts: first the projection is done in parallel,
then the magnetic response function is computed in serial. This requires several changes:
First, the different arrays namely: the regular solutions, onsite Green function, structural
Green function and t-matrix are all energy dependent quantities, therefore, they have been
allocated dynamically on each MPI process within the KKR-susc code. Second, after per-
forming the projection for each energy in parallel, all the arrays are gathered into the main
process. We implemented new routines that perform this task. The main process is then
used to write to disc: the projection coefficients, the projected onsite Green function, the
structural Green function and the t-matrix into separate files. This required the imple-
mentation of new routines that handle the write/read (I/O) of these quantities. Finally, a
restart mode was implemented into the KKR-susc code, which runs in serial, shortcuts the
projection and reads the needed data from the projection files. Several consistency checks
were made to ensure the compatibility between the sum rule, the dynamical magnetic sus-
ceptibility and new implementations.

All these implementations are compatible with the previous version of the code and
are not in conflict with other functionalities included in the KKR-susc code:

• External magnetic fields.

• LDA + U (The Hubbard U is a correction that accounts for the Coulomb repulsion
between electrons on the same atom).

• Magnetic interactions (computes the magnetic interaction tensor discussed in Sec. 3.5).

• Time-dependent magnetic susceptibility within linear response TD-DFT.

• Ground state charge and spin currents.

The new version of the code was used to generate all the results shown in Chapter 4. In
Fig. 2.2, we show a schematic comparison between the old and the new version of the
code. The new implementations add an essential feature: the inclusion of the SOI from the
host, which is necessary when dealing with magnetically doped topological insulators.
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b) New code

a) Old code

KKR-JM code
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Figure 2.2: Comparison between: a) The old version of the KKR-JM/KKR-impurity/KKR-susc
codes and b) The new version of these codes. The recent developments required to compute dynam-
ical magnetic susceptibility with SOI included from the host system are also highlighted.
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Chapter 3
Scattering of Rashba electrons off
magnetic impurities

The absence of spatial inversion symmetry combined with the spin-orbit interaction lead
to a spin-splitting of the energy bands in non-magnetic materials. At surfaces with high-
symmetry, these spin-splittings are well described by the so-called Rashba Hamiltonian
given in Eq. (3.1). The Rashba spin-splitting at metallic surfaces was first observed for the
two-dimensional (2D) Shockley surface state of the Au(111) surface [47, 119]. It was then
investigated for a number of clean [48, 49] and alloyed surfaces [120, 121], and surfaces
of semiconductors in contact with heavy metals [46]. Recently, large spin-splittings were
observed in ferroelectrics as well [122, 123].

On possible way of studying the spin-splitting of the surface states is by the deposi-
tion of magnetic impurities. Indeed, when a defect is present on the surface, the Rashba
electrons scatter-off that defect and this induces oscillations in the charge density of the
2D surface states, which are called Friedel oscillations [124]. However, no signature of
the spin-splitting was observed theoretically in the Friedel oscillations for the charge den-
sity [125]. More recently, Lounis et al. showed that a signature of the spin-splitting
can be observed in the Friedel oscillations of the spin magnetization density [126]. Be-
sides Friedel oscillations a multitude of rich phenomena can occur due to the scattering of
Rashba electrons on magnetic impurities.

In this thesis we address three examples of the manifestation of such scattering pro-
cesses. The first example is due to the multiple scattering of Rashba electrons at magnetic
impurities, that leads to an indirect exchange mechanism known as the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [60, 62, 61]. In addition to the isotropic exchange,
magnetic impurities deposited on surfaces with spin-orbit interaction give rise to the so-
called Dzyaloshinskii-Moriya (DM) interaction [51, 50], which favors non-collinear mag-
netic structures. The second example is the impact on magnetotransport properties. In par-
ticular, we expect contributions to the planar Hall effect (PHE) as well as the anisotropic
magnetoresistance (AMR). The anomalous Hall effect (AHE) is expected to be absent if
no external magnetic fields are applied [64]. Both the PHE and AHE are observed as
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a voltage transverse to the applied current [64, 127], in contrast to the AMR, which is
measured in the longitudinal geometry. The third example is the presence of bound state
charge current swirling around the magnetic impurities. They give rise to a finite orbital
magnetization. For chiral magnetic structures, the orbital magnetization is non-vanishing
even without spin-orbit interaction [67].

This chapter covers a wide variety of phenomena and consists of three main parts. The
first part introduces the Rashba Hamiltonian and the basic quantities used in scattering
theory such as the t-matrix. This is followed by an analysis of Friedel oscillations for
the charge and spin magnetization density for Fe atoms deposited on Au(111), which is
the system considered throughout this chapter. Then we discuss the magnetic interactions
between impurities, we track the origin of the DM interaction and of the not much in-
vestigated pseudo-dipolar interaction. At long distances, we have access to a rich phase
diagram not addressed in the usual bulk or 2D materials. Moreover, we consider dimers
and complex magnetic nanostructures.

The second part is about the scattering off impurities of Rashba electrons in presence
of external electric fields. We introduce a wave function formulation of the scattering
problem in two dimensions, and perform an expansion of the Rashba Green function in
a cylindrical basis (similar to the expansion done in Sec. 2.4.1 for the 3D electron gas
Green function). Then within linear response theory we compute the residual resistivity
tensor (an identical approach is used for the magnetic susceptibility within TD-DFT in
Sec. 2.4.1). We also analyze the dependence of the residual resistivity tensor on the direc-
tion of the spin moment, and discuss the AMR effect in the diagonal part, while PHE is
observed in the off-diagonal components.

In the third part, we discuss the induced bound currents in the Rashba electron gas due
to a single magnetic impurity, afterwards, we solve a Poisson equation using the bound
currents to access the orbital magnetization. Then we consider a dimer coupled antifer-
romagnetically in presence of the DM interaction. Finally, we examine a trimer with a
non-vanishing scalar chirality in presence and in absence of the spin-orbit interaction, re-
spectively.

The part of this chapter discussing magnetic interactions has been published in Ref. [128].
The section dedicated to the residual resistivity tensor was published in Ref. [66]. Fi-
nally, the last part addressing the impurity induced orbital magnetization was published in
Ref. [129].

3.1 Rashba Hamiltonian

As discussed previously, the spin-orbit interaction (SOI) leads in a structure-asymmetric
environment (such as a surface or interface) to a spin-splitting of the otherwise two-fold
degenerate eigenstates of a two-dimensional electron gas. The model of Bychkov and
Rashba [44, 130] describes this splitting by adding to the kinetic energy of the free elec-
trons a linear term in momentum. The Rashba Hamiltonian is given by:

HR =
p2
x + p2

y

2m∗
12 −

αso

~
(σxpy − σypx) , (3.1)
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where pγ , γ ∈ {x, y}, are the components of the momentum operator ~p in a Cartesian
coordinate system with x, y coordinates in the surface plane whose surface normal points
along ~ez . m∗ is the effective mass of the electron. σγ are the Pauli matrices and 12 is the
unit matrix in spin-space with a global spin frame of reference where the spin z-direction
is aligned parallel to ~ez . αso is the Rashba parameter, a measure of the strength of the
SOI and the parameter that controls the degree of Rashba spin-splitting. The eigenstates
corresponding to this Hamiltonian are written as a product of a plane wave in real space
and a two-component spinor

ψ~k±(~r) =
1√
2
ei~k·~r

(
1

±ieiφ~k

)
with φ~k = arctan

(
ky
kx

)
, (3.2)

i.e. they can be considered as a superposition of spin-up and down-states when measured
with respect to the surface normal. The orientation of the local spin-quantization axis is
given by the expectation value ~n±(~k):

~n±(~k) = 〈ψ±~k|~σ|ψ±~k〉 ,

= ±(− sinφ~k, cosφ~k, 0) ,

= ±~eφ .

(3.3)

It lies in the surface plane and is perpendicular to the wave vector ~k = k (cosφ~k, sinφ~k, 0)
= k ~ek. We find that the quantization axis is independent of the magnitude k and depends
only on the direction ~ek of the wave vector ~k. With respect to this quantization axis that
is parallel to ~eφ in a cylindrical coordinate system, ψ~k±(~r) are spin pure eigenstates and
we can associate ψ~k±(~r) for α = +(−) as spin-up (-down) state. The energy dispersion
is characterized by the k-linear splitting of the free-electron parabolic band dispersion as
denoted:

ε±(k) =
~2k2

2m∗
± αsok =

~2

2m∗
[
(k ± kso)2 − k2

so

]
. (3.4)

Due to the z-inversion broken symmetry and the presence of the SOI, the minima of the
spin-up and -down parabolas are shifted by the Rashba or the spin-orbit wave vector, re-
spectively, kso = m∗αso

~2 . The wave number for each band is defined by:{
k± = kM ∓ kso ,

with kM =
[

2m∗ε
~2 + k2

so

]1/2
,

so that k+− k− = −2 kso holds irrespective of the value of ε(> 0). For a constant energy
cut, the spin structure is shown in Fig. 3.1.

3.2 Rashba Green function
The Green function is one of the central quantities needed to study the scattering of Rashba
electron off magnetic impurities. It allows to use an embedding technique via the Dyson
equation given in Eq. (2.23). Thus, we connect the Green function describing the Rashba
electrons in presence of magnetic impuritiesG(~r, ~r ′, ε) and the unperturbed Rashba Green
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a) b)

Figure 3.1: Spin texture in the reciprocal space for a Rashba electron gas. a) For negative energies
located under the crossing of the Rashba bands. b) For positive energies located above the band
crossing.

functionGR(~r, ~r ′, ε). The Rashba Green function is computed analytically using the spec-
tral representation given in Eq. (2.20). Where the Kohn-Sham orbitals are replaced by
ψ~kα(~r) (eigenstates of HR) and the Kohn-Sham eigenenergies by εα(~k) (eigenvalues of
HR):

GR(~r, ~r ′, ε+ iη) =
∑
~kα

ψ~kα(~r)ψ†~kα(~r ′)

ε− εα(~k) + iη
, (3.5)

η is real and positive to ensure convergence. The Rashba Green function has translational
invariance: GR(~r, ~r ′, ε) = GR(~R, ε), with ~R = ~r− ~r ′. After performing the sums over ~k
and α, The Rashba Green function is given by a matrix in spin space:

GR(~R, ε) =

(
GD −GND e

−iβ

GND e
iβ GD

)
, (3.6)

β is the angle between ~R and the x-axis. The diagonal and off diagonal elements of the
Rashba Green function in spin space are defined as:

GD(R, ε) = − im∗

2~2(k+ + k−)

[
k−H

(1)
0 (k−R) + k+H

(1)
0 (k+R)

]
, (3.7)

GND(R, ε) = − im∗

2~2(k+ + k−)

[
k−H

(1)
1 (k−R)− k+H

(1)
1 (k+R)

]
. (3.8)

H
(1)
n (x) is a cylindrical Hankel function of the first kind for the n-order.
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3.3 Transition matrix
Here, we derive an approximation for the transition matrix (t-matrix) introduced previ-
ously in Sec. 2.4.2. It describes the scattering of an electron due to the presence of a
single potential v(~r), where v(~r) is a 2 × 2 matrix in spin space. The Dyson equation
characterizing this scattering process reads in real space:

G(~r, ~r ′, ε) = GR(~r, ~r ′, ε) +

∫
d~r ′′GR(~r , ~r ′′, ε)v(~r ′′)G(~r ′′, ~r ′, ε) . (3.9)

The previous equation can be reformulated in terms of the t-matrix, which is related to the
scattering potential via:

t(~r, ~r ′, ε) = v(~r) δ(~r − ~r ′) +

∫
d~r ′′ v(~r)GR(~r, ~r ′′, ε) t(~r ′′, ~r ′, ε) . (3.10)

Thus, when using the t-matrix Eq. (3.9) reads:

G(~r, ~r ′, ε) = GR(~r, ~r ′, ε)

+

∫
d~r ′′d~r ′′′GR(~r , ~r ′′, ε) t(~r ′′, ~r ′′′, ε)GR(~r ′′′, ~r ′, ε) .

(3.11)

The formulation of the scattering problem in terms of t-matrix in Eq. (3.11) is more conve-
nient since it allows to make approximations at the t-matrix level. For the considered
systems, when Rashba electrons scatter off an impurity whose spatial extent is much
smaller than the Fermi wave length λF, we can proceed within the s-wave approxima-
tion [131, 126]. For such a scatterer, the spatial dependency of the t-matrix can be approx-
imated with a δ-function. Furthermore, neglecting the spin-orbit interaction at the level
of the impurity is justified considering that for the studied impurities it is rather small (Fe
impurities). In this case, and when the magnetic moment of the impurity is pointing along
the z-axis (i.e. perpendicular to surface plane), the t-matrix is diagonal in spin space and
reads:

t(~r, ~r ′, ε) =

(
t↑↑(ε) 0

0 t↓↓(ε)

)
δ(~r) δ(~r ′) . (3.12)

The diagonal spin components of the t-matrix are given by:

tσσ(~r, ~r ′, ε) = tσσ(ε) δ(~r) δ(~r ′) ,

=
i~2

m∗
(e2iδσσ0 (ε) − 1) δ(~r) δ(~r ′) .

(3.13)

δσσ0 (ε) is the phase shift between the scattered wave function at the impurity and the
unscattered wave function for the orbital quantum numberm = 0 (in two dimension). The
analytical form of tσσ(ε) was derived in Appendix A for a magnetic impurity in a two
dimensional electron gas without spin-orbit interaction.

The s-wave approximation has been used numerous times for the interpretation of STM
based experiments [131, 132, 133, 134]. It was employed in the context of standing waves
on a Cu(111) surface [135] or a Au(111) surface [136], as well as for confined electronic
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states in corrals of Fe or Co adatoms deposited on a Cu(111) surface [137, 138]. For Fe
adatoms on a Cu(111) surface, good fits to the experimental features were obtained with a
phase shift of π/2 but a better agreement was found with a phase shift of i∞, which would
correspond to maximally absorbing adatoms (i.e. black dots) [138]. In the latter case, the
overall scattering amplitude reduces by a factor of 2 compared to the situation where a
phase shift of π/2 is considered.

δσσ0 (ε) can be traced back to the local density of states (LDOS) at the impurity site
using the so-called Friedel sum rule [124]:

Z =
1

π

∑
σ

∞∑
m=−∞

δσσm (εF) , (3.14)

where Z is the charge of the impurity. Using Eq. (3.14), one can derive the following
relation between the spin-polarized LDOS at the impurity site and the scattering phase
shift:

ρσσ(ε) =
1

π

∞∑
m=−∞

dδσσm (ε)

dε
. (3.15)

In order to access the phase shift δσσm (ε), we computed the density of states of an Fe
adatom deposited on Au(111) surface from first principles using the KKR Green function
method discussed in Sec. 2.4. We considered both non-magnetic and magnetic Fe adatoms,
for which the easy axis points out-of-plane (along the z-direction). We fitted the obtained
impurity LDOS with Lorentzian functional forms. The result of the fit is shown in Fig. 3.2.
In the s-wave approximation, the scattering phase shift can be computed analytically by
integrating Eq. (3.15) and we obtain:

δσσ0 (ε) =
π

2
+ atan

(
ε− εσ

Γσ

)
. (3.16)

For magnetic Fe adatoms, ε↓ = 0.05 eV is the position of the resonance for the minority-
spin channel slightly higher than the Fermi level εF located at zero energy and Γ↓ = 0.4 eV
is the resonance width. For the majority-spin channel ε↑ = ε↓−2.8 eV due to the exchange
splitting and Γ↑ = 0.6 eV. For the non-magnetic configuration ε↓ = ε↑ = −0.21 eV and
Γ↓ = Γ↑ = 0.6 eV.

The procedure displayed previously allows and an analytical description of the t-matrix
using scattering phase shifts, which can accessed from first principles. It provides a rea-
sonably accurate description of the scattered electronic waves at the impurities.
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Figure 3.2: Local density of states of an Fe adatom deposited on a Au(111) surface described by a
Lorentzian model wherein the broadening is induced by hybridization effects among the electronic
states of the impurity with those of the substrate. Two cases are considered, a magnetic (a) versus a
non magnetic impurity (b). After defining the phase shifts at the Fermi energy in the magnetic case,
the phase shifts in the non-magnetic case are derived considering the same charge for both type of
impurities.

3.4 Friedel oscillations
The Friedel oscillations introduced previously result from the screening of defects present
in metallic systems [124]. The shape of the oscillations corresponds to the real space
imaging of the Fermi surface, i.e. a two dimensional free electron gas with a cylindrically
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symmetric Fermi surface displays cylindrical oscillations around defects. In a two dimen-
sional electron gas without spin-orbit interaction, the Friedel oscillations in the charge
density at a large distance from the scatterer are given by:

δn(r) =
sin(2kFr + δ)

r2
. (3.17)

δn(r) is the induced change in the charge density around the impurity, r is distance away
from the impurity. kF is the Fermi wave vector and δ is the scattering phase shift describing
the impurity given in Eq. (3.16). The Friedel oscillations can be visualized experimentally
using scanning tunneling microscopy (STM). One of the most outstanding experiments
was done by Crommie et al. in Ref. [137], where they deposited corrals of Fe atoms on a
Cu(111) surface. They observed that within the corral the surface states are localized and
form a collection of resonant states.

3.4.1 Friedel oscillations in the induced charge density
As aforementioned, we now analyze the Friedel oscillations arising when a single mag-
netic impurity is deposited on a Rashba electron gas. The set up is parametrized for an
Fe impurity on a Au(111) surface. The Fe impurity is introduced by solving the Dyson
equation given in Eq. (3.11). It is described by the t-matrix in the s-wave approximation
discussed in Sec. 3.3. The induced charge density at a distance r from the Fe impurity and
an energy ε is computed from the Green function. For an Fe impurity located at the origin
it reads:

δn(~r, ε) = − 1

π
Im Trσ

(
GR(~r , 0, ε) t(ε)GR(0, ~r, ε)

)
. (3.18)

Considering that the magnetic moment of the Fe impurity is along the z-direction (out-of-
plane) [126], assuming that the SOI on the Fe impurity site is small and using the analytical
form of the Rashba Green function given in Eq. (3.6), we obtain the following expression
for δn(~r, ε):

δn(~r, ε) = − 1

π
Im
[
(GD GD +GND GND) (t↑↑(ε) + t↓↓(ε))

]
. (3.19)

At large distances (i.e. r → ∞), the Rashba Green function is given by its asymptotic
form (see Appendix C) and the induced charge density is written as:

n(~r, ε) ∝ 4m∗

π2~2(k+ + k−)2r

√
k−k+ cos((k− + k+)r) . (3.20)

When replacing the two wave vectors k± = kM ∓ kso (describing the two Rashba bands),
the induced charge simply reads:

n(~r, ε) ∝ m∗

π2~2k2
Mr

(2m∗ε
~2

)
cos(2kMr) , (3.21)

The previous equation shows the absence of interference due to the spin-orbit interaction
(i.e. kso) in the Friedel oscillations. Thus, one cannot observe the signature of the Rashba
spin-splitting in the oscillations of the charge density.



Interactions among magnetic impurities deposited on a Rashba electron gas 57

3.4.2 Friedel oscillations in the induced spin magnetization density
The introduction of a magnetic impurity into the Rashba electron gas breaks time reversal
symmetry (i.e t↑↑(ε) 6= t↓↓(ε)). This induces Friedel oscillations in the spin magneti-
zation density within the Rashba electron gas [126]. Thus, we investigate the possibility
of observing a signature of the spin-orbit interaction in the induced spin magnetization
density given by:

~m(~r, ε) = − 1

π
Im Trσ (~σGR(~r, 0, ε) t(ε)GR(0, ~r, ε)) . (3.22)

~σ is the Pauli vector, the presence of the spin-orbit interaction within in the Rashba elec-
tron gas gives rise to in-plane components for the magnetization besides the out-of-plane
component:

mx(~r, ε) = mxy(~r, ε) cosβ , (3.23)

my(~r, ε) = mxy(~r, ε) sinβ , (3.24)

mxy(~r, ε) = − 2

π
Im [GD GND (t↑↑(ε)− t↓↓(ε))] , (3.25)

mz(~r, ε) = − 1

π
Im [(GD GD −GND GND) (t↑↑(ε)− t↓↓(ε)] , (3.26)

where mxy(~r, ε) is the in-plane magnetization and β is the angle between ~r and the x-axis
introduced in Eq. (3.6). The asymptotic form of ~m(~r, ε) at large distances is given by:

mx(~r, ε) ∝ m∗

π2~2k2
Mr

(k− sin(2k−r)− k+ sin(2k+r) cosβ ,

my(~r, ε) ∝ m∗

π2~2k2
Mr

(k− sin(2k−r)− k+ sin(2k+r)) sinβ ,

mz(~r, ε) ∝
m∗

π2~2k2
Mr

(k− cos(2k−r) + k+ sin(2k+r)) .

(3.27)

The induced magnetization density is given by a linear combination of two wave vectors
k± due to the spin-orbit interaction, which leads to interferences that can be measured
using SP-STM. In particular one can notice a beating of the oscillations in mz(~r, ε) at a
distance rso = π

4kso
≈ 60 Å for an Fe impurity on a Au(111) surface. A more detailed

analysis shows that the magnetization density is given by a linear combination of two
Skyrmionic waves. One wave propagates with k+ while the other one propagates with
k− [126].

3.5 Interactions among magnetic impurities deposited on
a Rashba electron gas

After studying the impact of a single magnetic impurity deposited on a two dimensional
electron gas with Rashba spin-orbit interaction, we now consider systems with several
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magnetic impurities interacting via Rashba electrons. The presence of the spin-orbit in-
teraction and the lack of inversion symmetry generate the Dzyaloshinskii-Moriya (DM)
interaction [51, 50], a key ingredient for non-collinear magnetism, which is at the heart
of chiral magnetism. The DM interaction defines the rotation sense of the magnetiza-
tion, rotating clockwise or counter clockwise along a given axis of a magnetic material.
This is the case of spin-spirals in two-dimensional [52, 53, 54] or one-dimensional sys-
tems [55, 56] down to zero-dimensional non-collinear metallic magnets [63, 139, 140].
The ever-increasing interest in understanding the properties of the DM interaction and the
corresponding vector is, thus, not surprising. Although the symmetry aspects of these in-
teractions were discussed in the seminal work of Moriya [50], the ingredients affecting
the magnitude and the particular orientation of a DM vector are not that explored but are
certainly related to the details of the electronic structure.

In the context of long-range interactions mediated by conduction electrons, the DM
interaction was addressed by Smith [59] and Fert and Levy [58]. They found a strong
analogy with the RKKY interactions [60, 62, 61]. Indeed, the long-range DM vector
oscillates in magnitude and changes its orientation as function of distance, which was
recently confirmed experimentally with scanning tunneling microscopy (STM) and theo-
retically with ab-initio simulations based on density functional theory [63]. We note that
today, besides theory, state-of-the-art STM experiments can be used to learn about the
magnitude, oscillatory behavior and decay of the RKKY interactions as demonstrated in
Refs. [141, 142, 143]. The information about all the magnetic interactions is contained in
the magnetic exchange tensor J ij which will be discussed in detail in the next sections.

3.5.1 Extended Heisenberg model
The generalization of the isotropic Heisenberg model to include anti-symmetric and anisotropic
interactions is given in Ref. [144]. The elements of the magnetic exchange tensor, J ij , can
be extracted by differentiating Hm according to ~ei and ~ej :

Hm =
1

2

∑
i,j

~ei J ij ~ej , Jαβij =
∂2Hm

∂eαi ∂e
β
j

, (3.28)

with {α, β} = {x, y, z} and ~ei being the unit vector of the magnetic moment at site i. The
exchange tensor is decomposed into three contributions:

J ij =
1

3
(TrJ ij) 13 + JA

ij + JS
ij . (3.29)

In the right-hand side of the previous equation, the first term is the isotropic exchange and
we define Jij = 1

3 (TrJ ij), while JA
ij is the anti-symmetric part:

JA
ij =

J ij − JT
ij

2
, (3.30)

which is connected to the Dzyaloshinskii-Moriya vector components via:

JA
ij =

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

 . (3.31)



Interactions among magnetic impurities deposited on a Rashba electron gas 59

The last term of Eq. (3.29), JS
ij , is the symmetric part that describes pseudo-dipolar inter-

actions:

JS
ij =

J ij + JT
ij

2
− 1

3
Tr {J ij}13 . (3.32)

For the Rashba model, we will see that there is a more natural way of decomposing the
tensor which is given in Eq. (3.42). The Hamiltonian Hm can be written in terms of the
Dzyaloshinskii-Moriya vector as:

Hm =
1

2

∑
ij

Jij ~ei · ~ej +
1

2

∑
ij

~Dij · (~ei × ~ej) +
1

2

∑
ij

~ei J
S
ij ~ej . (3.33)

3.5.2 Mapping procedure
The strategy is to consider the Hamiltonian describing the electronic structure of the nanos-
tructures and perform the same type of differentiation as in Eq. (3.28) in order to identify
the tensor of magnetic exchange interactions. We use Lloyd’s formula [100], which per-
mits the evaluation of the energy variation due to an infinitesimal rotation of the magnetic
moments, starting from a collinear configuration [80, 145, 144]. In general, the contribu-
tion to the band energy (single-particle energy) after embedding the nanostructure is given
by:

εband =
1

π
Im

∫ εF

εR

dεTr lnT (ε)−1 , (3.34)

where εF is the Fermi energy, εR = −~2k2so
2m∗ is the bottom of the Rashba energy bands and

Tr is the trace over impurity position- and spin-indices. T (ε) is the full scattering matrix
given by a Dyson equation:

T−1
ij (ε) = t−1

i (ε) δij −GR
ij(ε) , (3.35)

T ij(ε) is the full scattering matrix connecting the sites i and j. In practice, we use the s-
wave approximation as in Eq. (3.13). The Green function describing the magnetic nanos-
tructures is given by a Dyson equation similar to Eq. (3.9). However, ti(ε) is replaced by
T ij(ε) to include the multiple scattering effects:

Gij(ε) = GR
ij(ε) +

∑
km

GR
ik(ε)T km(ε)GR

mj(ε) . (3.36)

The elements of the tensor of exchange interaction are then given by:

Jαβij =
∂2

∂eαi ∂e
β
j

εband = − 1

π
Im

∫ εF

εR

dεTr
∂2

∂eαi ∂e
β
j

lnT (ε) . (3.37)

Using Eq. (3.35), we evaluate the required second derivative and find for the elements of
the tensor of exchange interactions:

Jαβij = − 1

π
Im

∫ εF

εR

dεTr tαi (ε)Gij(ε) t
β
j (ε)Gji(ε) , (3.38)
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the trace is taken over the spin-index, and tαi (ε) is simply the derivative of ti(ε) with
respect to eαi . Since the t-matrix can be written as:

ti(ε) =
t↑↑i (ε) + t↓↓i (ε)

2
12 +

t↑↑i (ε)− t↓↓i (ε)

2
~σ · ~ei , (3.39)

we find that tαi (ε) = ∂ti(ε)
∂eαi

= ∆i(ε)σα, with ∆i(ε) =
t↑↑i (ε)−t↓↓i (ε)

2 . The final form of
the tensor of magnetic exchange interactions is then finally given by:

Jαβij = − 1

π
Im

∫ εF

εR

dε∆i(ε) ∆j(ε) TrσαGij(ε)σβGji(ε) . (3.40)

We see that Eq. (3.40) depends on the magnetic structure of the impurity cluster, since it
involves the renormalized Green function which depends on the orientation of the mag-
netic moments of the impurities via Eq. (3.36). In practice, we consider three different
ferromagnetic configurations, aligned along the x, y and z-axes, compute the respective
exchange tensors and keep the transverse blocks (e.g. for the ferromagnetic configuration
along z, we keep the xy-block); elements that occur repeatedly are averaged.

3.6 Magnetic properties of dimers
Before studying the magnetic interactions between magnetic adatoms for complicated
nanostructures, we first compute the magnetic interaction tensor for two adatoms, rely-
ing on two approaches: first using the RKKY-approximation, expected from second order
perturbation theory and used for example by Ref. [146]; second by solving numerically
the Dyson equation given in Eq. (3.36).

3.6.1 RKKY-approximation

The magnetic interactions given in Eq. (3.40) can be computed analytically, by considering
the unrenormalized Green functions,GR

ij(ε), instead ofGij(ε). In the particular case of a
two-dimensional Rashba electron gas, the Rashba Green function can be expressed using
Pauli matrices:

GR
ij(ε) = GD 12 − iGND (cosβ σy − sinβ σx) . (3.41)

β is the angle between the vector connecting the impurities i, j and the x-axis (see
Sec. 3.2). Surprisingly, we found anisotropies in the diagonal part of the exchange tensor
that are generally neglected in the literature. The physical meaning of these anisotropies
can be traced back to the extended Heisenberg model defined by the tensor of magnetic
exchange interactions. In fact, by defining the x-axis as the line connecting the two sites
i and j, we show in Appendix B that the extended Heisenberg Hamiltonian describing the
corresponding magnetic coupling can be written as:

Hm = J(r)~ei · ~ej +D(r) (~ei × ~ej)y + I(r) eyi e
y
j , (3.42)
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where the exchange constants (J(r), D(r) and I(r)) are related to the Rashba Green func-
tion by:

J(r) = − 2

π
Im

∫ εF

εR

dε∆i(ε) ∆j(ε) (G2
D −G2

ND) , (3.43)

D(r) =
4

π
Im

∫ εF

εR

dε∆i(ε) ∆j(ε)GD GND , (3.44)

I(r) = − 4

π
Im

∫ εF

εR

dε∆i(ε) ∆j(ε)G
2
ND . (3.45)

J(r) is the isotropic exchange interaction and r is the distance between two impurities i
and j, defined in this particular case (dimer along the x-axis) as J(r) = Jxxij = Jzzij , which
if positive favors an antiferromagnetic coupling in our convention, otherwise it favors a
ferromagnetic coupling. D(r) is the y component of the DM vector, which is by symmetry
the only nonzero component (Third rule of Moriya [50]). This favors chiral magnetic
textures lying in the (xz) plane. I(r) is the pseudo-dipolar term, a two-ion anisotropy
term, coming from the symmetric part of the exchange tensor. It leads to an anisotropy in
the diagonal-part of the tensor of exchange interaction, for instance Jxxij = Jzzij 6= Jyyij .
Considering the impurities along the x-axis, I(r) is given by Jyyij − Jzzij . This anisotropy
is finite because of the two-dimensional nature of the Rashba electrons, so the x- and y-
directions are non-equivalent to the z-direction. Here, I(r) favors a collinear magnetic
structure along the y-axis and counteracts the DM interaction.

The analytical forms of the magnetic exchange interactions allow us to understand
their origin in terms of the magnetic Friedel oscillations generated by single atoms [126].
These oscillations carry a complex magnetic texture that can be interpreted in terms of
Skyrmionic-like waves. Within the RKKY-approximation and neglecting the energy de-
pendence of ∆i(ε), the isotropic interaction, J(r), connecting two impurities at site i
and j, is proportional to the z-component of magnetization generated at site j by a sin-
gle impurity at site i. In other words, the impurity at site j feels the effective mag-
netic field generated by the magnetization at that site but induced by the adatom at site
i (J(r) ∝

∫
dεmz(r, ε)). D(r), however, is defined by the in-plane component of the

induced magnetization (D(r) ∝
∫

dεmxy(r, ε)). Here, the corresponding magnetic field
acting over the second impurity has an in-plane component and naturally leads to a non-
collinear magnetic behavior, i.e. the natural impact of the DM vector. I(r) does not have
a simple interpretation, but it can be related to the anisotropy (difference) of the induced
magnetization parallel to the impurity moment upon its rotation from out of plane to in
plane.

Analytical evaluation of the isotropic exchange interaction J(r)

In order to derive analytically the exchange interactions, we use an approximation for
the t-matrices. We assume that they are energy independent (resonant scattering for the
minority-spin channel, i.e. δ↓↓(ε) = π

2 , and no scattering for the majority-spin channel,
i.e. δ↑↑(ε) = π), which allows us to write ∆i(ε) = − 2i~2

m∗ . This approximation used in
Ref. [126] is reasonable for an adatom like Fe deposited on Au(111) surface. Then, we
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find the asymptotic behavior of GD and GND for large distances r (see Appendix C). The
isotropic exchange constant can be expressed as:

J(r) =
2

π2r
Im

∫ εF

εR

dε
i

(k− + k+)2
(k− e

2ik−r + k+ e
2ik+r) ,

=
~2

m∗π2r

[
1

2r
sin(2kFr) cos(2ksor)− kso sin(2ksor) SI(2kFr)

]
.

(3.46)

SI(x) is the sine-integrated function of x. J(r) is found to be the sum of two functions.
The first one evolves as a function of 1

r2 , as expected for regular two-dimensional sys-
tems but the second function decays like 1

r , which has been neglected in the work of
Ref. [146]. The 1

r decay leads to a slower decay of J(r) than what is known for a regular
two-dimensional electron gas. The origin of this term is the Van Hove singularity at the
bottom of the two bands; the density of states of the Rashba electron gas resembles that of
a one -dimensional electron gas between εR and ε = 0, where the two bands cross. At very
large distances, SI(x) converges to a constant (π2 ) and J(r) is behaving like 1

r sin(2ksor).
Naturally, when kso is set to zero, we recover the classical form of the RKKY interaction
without spin-orbit interaction for a free electron gas in two-dimensions, i.e. J(r) evolves
then like 1

r2 sin(2kFr).

Analytical evaluation of the y component of the DM vector D(r)

Considering the same approximations used to compute the isotropic part of the exchange
interaction tensor, we find the y-component of the DM vector (D(r)) simply given by:

D(r) = − 4

π2r
Im

∫ εF

εR

dε
1

2(k− + k+)2
[ k− e

2ik−r − k+ e
2ik+r ] ,

= − ~2

m∗π2r

[
1

2r
sin(2kFr) sin(2ksor) + kso cos(2ksor) SI(2kFr)

]
.

(3.47)

Like the isotropic exchange constant, D(r) is a sum of two terms. The first term decays
as 1

r2 , while the second as 1
r . A perturbative development of D(r) in terms of kso shows

that D(r) is first order in spin-orbit interaction. At very large distances D(r) evolves like
1
r cos(2ksor).

Analytical evaluation of the pseudo-dipolar term I(r)

The last quantity that is left to be determined is the pseudo-dipolar term I(r). Following a
similar approach as for calculating J(r) and D(r), we show in Appendix C that I(r) is a
sum of two integrals over the energy because of a branch cut in the Hankel functions. The
first integral, denoted I1(r), goes from εR to zero and the second, I2(r), goes from zero to
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εF:

I1(r) = − 4

π2r
Im

∫ 0

εR

dε
1

2(k− + k+)2
[i (k− e

2ik−r + k+ e
2ik+r)] + 2

√
|k−|k+ e

i(k+−|k−|)r] ,

I2(r) = − 4

π2r
Im

∫ εF

0

dε
i

2(k− + k+)2
[k− e

2ik−r + k+ e
2ik+r − 2

√
k−k+ e

i(k−+k+)r] .

(3.48)

If we sum up the two terms I1(r) + I2(r):

I(r) = −J(r) +
~2

m∗π2r

[∫ kF

|kso|
dk

√
1− k2

so

k2
cos(2kr)

−
∫ |kso|

0

dk

√
k2

so

k2
− 1 sin(2kr)

]
.

(3.49)

The integral involving cos(2kr) is important at short distances since it competes with one
of the terms defining −J(r). In fact, it has the opposite sign of − 1

2r sin(2kFr) cos(2ksor)
(see Eq. (3.46)). This reduces considerably the value of I comparing to J(r). The second
integral involves sin(2kr) and therefore it leads to a small contribution for low values of
kso. A perturbative development of I(r) in terms of kso shows that I(r) is second order in
spin-orbit interaction (∝ k2

so).

Comparison and evolution of the exchange interactions as a function of the distance

In Fig. 3.3, we plot the magnetic exchange interactions J(r), D(r) and I(r) as function
of the distance between two magnetic adatoms deposited on a Au(111) surface. The pa-
rameters used for these simulations are given in Sec. 3.3. The black curve depicts J(r),
which at short distances is characterized by a wavelength λ = π

kF
≈ 18.5 Å. We see in

Fig. 3.3 a beating of the oscillations, which can be understood by looking at the first term
in Eq. (3.46). Writing it as 1

4r (sin(2k−r) + sin(2k+r)), with k± = kF ∓ kso, the su-
perposition of these two wave vectors causes a beating effect at rso = π

4kso
≈ 60 Å . The

finite value of J(r) at rso is due to the second term in Eq. (3.46), since SI(2kFr) ≈ π
2 and

sin(2ksor) ≈ 1. One notices that for a large range of distances (r > 40 Å) the magnetic
interactions do not oscillate around the y = 0 axis, which is due to the SI(x) term present
in Eqs. (3.46) and (3.47) for J(r) and D(r), while for I(r), the shift comes from the last
term in Eq. (3.49). All these terms originate from the Van Hove singularity at the bottom of
the bands. Similarly to J(r), D(r) is negative for distances larger than 25 Å, which means
within the RKKY-approximation, the chirality defined by the sign of the DM interaction
changes only for dimers separated by rather small distances.
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Figure 3.3: Evolution of the magnetic interactions J(r), D(r), I(r) (see Eq. (3.28)) as a function
of the distance, for αso = −0.4 eV Å and m∗ = 0.26 me (parameters for Au(111) surface [147]
used in Eq. (3.1)). We use the RKKY-approximation (see Eqs. (3.43), (3.44), 3.45) and assume a
maximal scattering cross section for the minority spin channel (δ↓ = π

2
) and no contribution for the

majority spin channel (δ↑ = π).

3.6.2 Beyond the RKKY-approximation
The deposited magnetic impurities naturally renormalize the electronic properties of the
Rashba electrons. We can now prove that the contributions of the sine integral to the mag-
netic interactions are artifacts of the RKKY approximation. When the energy approaches
the Van Hove singularity, ε→ εR = −~2k2so

2m∗ , the multiple scattering series cannot be trun-
cated, and the RKKY approximation cannot be made. The Green function connecting two
impurities i and j is given by:

Gij(ε) = (1−GR
ij(ε) tj(ε)G

R
ji(ε) ti(ε))

−1GR
ij(ε)

= GR
ij(ε) +GR

ij(ε) tj(ε)G
R
ji(ε) ti(ε)G

R
ij(ε) + . . . ,

(3.50)

where the second equality corresponds to the multiple scattering, or Born series. When
ε → εR, the Rashba Green function GR

ij(ε) → ∞. However, from the first equality in
Eq. (3.50), we have Gij(ε) → 0 for ε → εR, therefore, the Van Hove singularity will
not contribute to the exchange interactions computed from Eq. (3.40) and the contribution
from SI(x) vanishes.

In order to quantify the impact of the renormalization on the electronic states mediat-
ing the magnetic exchange interactions, we numerically compute Gij(ε), by considering
consistently the multiple scattering effects. This is done first via considering an energy
dependence in the t-matrix assuming that they correspond to a Lorentzian in the electronic
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structure of the impurities (see Sec. 3.4.1). Then we use Eq. (3.35) for computing T (ε).
Afterwards we solve the Dyson equation (Eq. (3.36)) giving G(ε). The evolution of the
three exchange interactions after renormalizing the Green function is given in Fig. 3.4. As
expected, we note the disappearance of the RKKY-approximation artifact leading to the
apparent offset of the oscillations beyond r = 40 Å (see Fig. 3.4). The beating effect in
J(r) occurs at the same distance as in the RKKY-approximation because it is an intrinsic
property of the Rashba electron gas. At large distances the intensities of J(r) and D(r)
are decreasing quickly, but I(r) keeps oscillating up to a distance of ≈ 200 Å where it
decreases quickly to zero.
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Figure 3.4: Beyond the RKKY-approximation and using the electronic structure renormalized by
the presence of two impurities (Eqs. (3.36) and (3.40)). The vertical lines define a magnetic phase
diagram indicating the nature of the orientation of the two magnetic moments as function of their
separation. C indicates the collinear phase of the magnetic moments and NC the non-collinear phase.

3.6.3 Connecting the different parts of the exchange interaction ten-
sor

Before discussing the magnetic phases emerging from the competition due to the differ-
ent interactions present in our magnetic Hamiltonian Hm from Eq. (3.28), it is interest-
ing to analyze the possibility of connecting J(r) to D(r) within our model. Recently,
it was demonstrated that, in the context of a micromagnetic model, the spin stiffness
A ∼ ∑

j r
2
jJ(rj), the micromagnetic counterpart of J(r), and L =

∑
j rjD(rj), the

counterpart of D(r) called the Lifshitz invariant can be related to each other for low SOI
[148]:

L ∼ −2ksoA . (3.51)
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The sum over sites j is limited by the size of the nanostructure but it can be infinite, e.g. if
dealing with a monolayer or an infinite wire. We checked the validity of the previous rela-
tion utilizing the analytical forms of J(r) andD(r) obtained in the RKKY-approximation,
i.e. Eqs. (3.46) and (3.47), and found that Eq. (3.51) can be recovered for ksor � 1 but the
error is proportional to the term involving the sine integral SI(2kFr). So if one neglects
the contribution of the Van Hove singularity of the Rashba electron gas, one arrives at the
formula of Kim et al. [148].

However, we proved that the multiple scattering precisely cancels this extra contribu-
tion, so we propose the following relation to hold:

D(r) =
1

2r

∂J(r)

∂kso
. (3.52)

First, we compare the RKKY expressions in Fig. 3.5a, inserting the result of Eq. (3.46) in
Eq. (3.52), and then the RKKY expression for D(r) given in Eq. (3.47). The agreement is
very poor, as expected. Second, in Fig. 3.5b we extract J(r) from Eq. (3.40) and numeri-
cally evaluate Eq. (3.52), and then compare with D(r) given also by Eq. (3.40). So for the
more realistic case (using the renormalized electronic structure) we find that Eq. (3.52) is
a very good approximation.

The intriguing implication of Eq. (3.52) is that it gives an interpretation for the origin of
the chirality being left– or right–handed according to the sign ofD(r). For a given distance
r, D(r) can be of the same (opposite) sign of J(r) if the latter’s magnitude increases
(decreases) with the spin-orbit interaction.

3.6.4 Magnetic configurations of dimers
Having established the behavior of the tensor of magnetic exchange interactions as a func-
tion of distance, we investigate now the magnetic ground state of different nanostructures
characterized by different geometries and different sizes. After getting the magnetic in-
teractions with the mapping procedure described in Sec. 3.5.2, we minimize the extended
Heisenberg Hamiltonian with respect to the spherical angles, (θi, φi), defining the orien-
tation of every magnetic moment:

~ei = (cosφi sin θi, sinφi sin θi, cos θi) . (3.53)

In order to check the stability of the magnetic ground state, we often add to the ex-
tended Heisenberg Hamiltonian the term K

∑
i(e

z
i )

2, where K is a single-ion magnetic
anisotropy energy favoring an out-of-plane orientation of the magnetic moment as it is the
case for an Fe adatom on Au(111). We choose as a typical value K = −6 meV for all the
investigated nanostructures [149].

For the particular case of the dimer, an analytical solution is achievable by noticing that
two magnetic states are possible: collinear (C) and non-collinear (NC). This is counter-
intuitive, since the presence of the DM interaction leads usually to a non-collinear ground
state. The presence of the pseudo-dipolar term I(r) makes the physics richer and stabilizes
collinear magnetic states. Once more, because of the particular symmetry provided by the
Rashba electron gas, within the non-collinear phase, the only finite component of the DM
vector, Dy(r), enforces the two magnetic moments to lie in (xz)-plane perpendicular to
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the DM vector. Within the collinear phase, I(r) enforces the moments to point along the
y-axis.

Figure 3.5: (a) Comparison between D(r) computed from the RKKY-approximation, Eq. (3.47),
and from Eq. (3.52). (b) The comparison involves D(r) computed from the renormalized Green
functions Eq. (3.40), i.e. beyond the RKKY-approximation, and from Eq. (3.52). As explained in
the main text, the contribution from the Van Hove singularity that leads to the discrepancy seen in
panel (a) is spurious.

Non-collinear phase

Here, the magnetic moments lie in the (xz)-plane and the pseudo-dipolar term does not
contribute to the ground state energy. The ground state is then defined by the angle,
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θ0(r) = atanD(r)
J(r) , between the two magnetic moments at sites i and j. The energy

corresponding to this state is −|J(r)|
√

1 + D2(r)
J2(r) . With the single-ion anisotropy, K,

the ground state angle becomes θ0 = atan ( D(r)
J(r)+K ). As an example, we consider two

adatoms separated by d = 10.42 Å which corresponds to the seventh nearest neighbors
distance on Au(111) surface. In this case J = 3.45 meV and D = 0.96 meV and the
ground state angle (θ0) is 164◦ (K = 0 meV) or 171◦ (K = −6 meV).

Collinear phase

D(r) does not contribute to the ground state configuration. When J(r) and I(r) are both
negative the magnetic moments are parallel and point along the y-axis with the energy
J(r) + I(r), while for positive J(r) and I(r) the magnetic moments are anti-parallel and
point along the y axis too, with the energy−(J(r)+I(r)). If J(r) and I(r) have opposite
signs, for J(r) > 0 the magnetic moments are anti-parallel in the (xz)–plane with the
energy −J(r), while for J(r) < 0 the magnetic moments are parallel in the (xz)–plane
with the energy J(r). However, these last two solutions will not occur, since the NC phase
is lower in energy.

Competing phases

There is competition between the collinear phase C and the non-collinear phase NC, which
depends on the involved magnetic interactions. Without I(r), Fig. 3.4 will consist of one
single phase, the NC phase. The presence of the pseudo-dipolar interaction I(r) provides
an alternation of the two phases depending on the inter-adatom distance. The magnetic
anisotropy K favours an out-of-plane orientation of the moments and tends to decrease
the spatial range of the collinear phase where the moments point along the y-axis.

Magnetic phase diagram

We drop the r dependence of the magnetic interactions (J,D and I) and study the phase
diagram of the dimers (K = 0 meV) as seen in Fig. 3.6. The color scale shows the energy
difference ∆E between the ground states found in the NC phase and C phase normalized
by |J |. A negative (positive) energy difference corresponds to a NC (C) ground state. Thus
the blue region corresponds to a C phase and the red region to a NC phase: ∆E = ENC−EC

|J| = −
√

1 + D2

J2 + 1 for J and I with an opposite sign,

∆E = ENC−EC
|J| = −

√
1 + D2

J2 + (1 + I
J ) for J and I with the same sign.

(3.54)
For small ratios D

J , if I
J < 0 then ∆E

|J| simplifies to − D2

2J2 and if I
J > 0 it simplifies to

− D2

2J2 + I
J , which define the magnetic phases plotted in Fig. 3.6. We notice that when I

and J are of the same sign, the dimers are mostly characterized by a C ground state. The
corresponding C phase is separated from the NC phase by a parabola as expected from the
term− D2

2J2 . Moreover, we note that even within the NC phase, a transition occurs when the
sign of I

J changes. This is related to the nature of the NC phase that changes by switching
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the sign of IJ , which leads to an additional, IJ , term in the energy difference. As mentioned
earlier, if I

J is positive the moments are in plane and align (parallel or anti-parallel) along
the y direction, while a negative I

J leads to an alignment in the (xz) plane. For negative
I
J , one notices that when D

J goes to zero, the plotted energy difference goes to zero, which
does not mean that the C and NC phases are degenerate but it is the signature that the
rotation angle of the moments goes to zero. Thus, at DJ = 0, we have only a C phase.
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Figure 3.6: Phase diagram for the magnetic ground states of dimers. The color scale represents the
energy difference normalized by |J | between the non-collinear (red colour) and collinear states (blue
colour) as function of the parameters {D

J
, I
J
} (see Eq. (3.54)).

3.7 Magnetic properties of complex nanostructures

After studying the properties of magnetic dimers, we build more complex nanostructures
of different sizes and shapes made of Fe adatoms deposited on Au(111) according to the
parameters given in Sec. 3.6.2. The distance between the first nearest neighbors is chosen
to be d = 10.42 Å for all structures, corresponding to the seventh nearest neighbors
distance on the Au(111) surface (lattice parameter a = 2.87 Å). This is very close to what
is accessible experimentally [150].

We compute the magnetic interactions for the considered nanostructures. For the cho-
sen inter-adatom distance to build the magnetic nanostructures, interactions beyond nearest
neighbors play no significant role. For that reason, we report in Table 3.1 only the aver-
age nearest-neighbor interactions, although all interactions are taken into account when
determining the magnetic ground states numerically. The z component of the DM vector
is two orders of magnitude smaller than the in-plane components for all the considered
nanostructures, therefore, it will be omitted when discussing the magnetic ground states.
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A summary of the obtained average magnetic interactions between nearest neighbors is
provided in Table 3.1.

Structures J (meV) D (meV) I (meV) θ(◦)
Chain 6.90 2.00 0.26 110
Trimer 3.51 1.00 0.13 117
Hexagon 5.64 1.67 0.23 164
Heptamer 4.69 (4.62) 1.37 (1.36) 0.18 (0.12) 120 (142)

Table 3.1: Summary of the average magnetic interactions between nearest neighbours for the calcu-
lated magnetic nanostructures. The values between parenthesis for the heptamer are for the nearest
neighbors on the outer ring.

3.7.1 Magnetism of linear chains
We investigated several linear chains of different sizes. All of them presented the same
characteristics. Here we discuss the example of a wire made of 14 adatoms. In this case,
the isotropic exchange interaction between the nearest-neighbors is antiferromagnetic. On
average it is equal to 6.90 meV, i.e. the double of the isotropic interaction obtained for
the dimer, which highlights the impact of the nanostructure in renormalizing the electronic
structure of the system. Within the RKKY-approximation, the magnetic interactions would
be independent from the nature, shape, size of the deposited nanostructures. Due to the
Moriya rules, the DM vector lies along the y-direction within the surface plane similar to
the dimer case. It is thus perpendicular to the x-axis defined by the chain axis. The DM
interaction is around 2 meV between nearest neighbors, i.e. once more the double of the
value obtained for the dimer.

The magnetic ground state is a spiral contained in the (xz) plane with an average
rotation angle of 110◦ between two nearest neighboring magnetic moments (see Fig. 3.7).
Interestingly, this angle is much smaller than the one found for the dimer (164◦) but similar
to that found for intermediate chain sizes. The pseudo-dipolar term is around I = 0.26
meV, and it has no impact on the ground state. This situation is equivalent to the NC
phase of the dimer. Of course, choosing an inter-atomic distance with a large pseudo-
dipolar term for the dimers, leads generally to stable collinear magnetic wires (not shown
here). We noticed that the effect of the magnetic anisotropy energy (K = −6 meV ) is
mainly on the edge atoms. Indeed, the rotation angles between adjacent inner-moments
remain around 110◦ while at the edges, the magnetic moments are pointing more along the
z-direction. The rotation angle between the magnetic moment at the edge and the z-axis
is reduced to 25◦.

3.7.2 Trimer
We studied a trimer forming an equilateral triangle. The isotropic exchange constant J is
equal to 3.51 meV favoring antiferromagnetic coupling, a value close to the one found for
the dimer. The frustration is large in this case leading to a non-collinear ground state even
without SOI [151, 152]. The magnetic moments lie in the same plane, e.g. the surface
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x

yz

Figure 3.7: Magnetic ground state of a wire made of 14 adatoms. The interadatom distance is
d = 10.42 Å, while the average nearest-neighbor isotropic exchange interaction is J = 6.90 meV
and the nearest-neighbors DM vector points along the y-axis with an average intensity D = 2 meV.
The magnetic anisotropy K = 0 meV. The spiral is characterized by an average rotation angle of
110◦ between nearest neighboring magnetic moments.

plane, with an angle of 120◦ between two magnetic moments. This state has continuous
degeneracy, since rotating each magnetic moment in the same way leaves the energy in-
variant. If we now consider the DM interaction, we find that ~D, with a magnitude of 1.0
meV (similar to the dimer’s value), lies in the xy plane and perpendicular to the axis con-
necting two adatoms (see Fig. 3.8c). This interaction lifts the degeneracy present without
D, stabilizing the magnetic structure shown in Fig. 3.8a and b. The pseudo-dipolar term I
is equal to 0.13 meV and is small compared to J and D therefore the non-collinear phase
is more stable. The isotropic interaction keeps the angle between the in-plane projections
of the moment at 120◦, while the DM interaction generates a slight upward tilting (81◦

instead of 90◦). In fact, every DM vector connecting two sites favors the non-collinearity
of the related magnetic moments by keeping them in the plane perpendicular to the sur-
face and containing the two sites. This is however impossible to satisfy at the same time
for the three pairs of atoms forming the trimer, which leads to the compromise shown in
Fig. 3.8a and b. The magnetic anisotropy reduces (K = −6 meV) considerably the non-
collinearity and the three moments are enforced to point almost-parallel to the z-axis. Two
of the magnetic moments are characterized by an angle of 10◦ instead of 81◦ with respect
to the z-axis, while the angle of the third moment is 173◦ as shown in Fig. 3.8d. This is
an interesting outcome compared to the behavior of the wire, which is characterized by
a large averaged DM interaction in comparison to the trimer. Obviously the shape of the
nanostructure is important in stabilizing non-collinear magnetism.

3.7.3 Hexagon

We consider now a system of six atoms forming a hexagonal shape with the same inter-
atomic distance as the one considered earlier. The magnetic ground state configuration is
non-collinear as shown in Figs. 3.9 (a) and (b). The isotropic magnetic exchange inter-
action, J , between nearest neighbors is of antiferromagnetic type similarly to the value
obtained for the other nanostructures studied so far. J reaches a value of 5.64 meV, which
is rather close to the interaction found for the wire. In fact one could consider this hexag-
onal structure as a closed wire. The magnitude of the DM vector connecting two nearest
neighbors is large, 1.67 meV, but not as large as the one of the wire. The non-collinear
state is better appreciated when plotting the projection of the moments unit vectors on
the surface plane in Fig. 3.9c and along the z-axis in Fig. 3.9d. The polar angle is either
16◦ or 164◦, according to the antiferromagnetic nature of the interactions. The azimuthal
angle follows the symmetry of the hexagon, leading to an azimuthal angle difference of
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Figure 3.8: Non-collinear magnetic configuration for a trimer on an equilateral triangle shown from
the top view (a) and side view (b). The interadatom distance d = 10.42 Å, while the isotropic
exchange interaction is J = 3.51 meV and the intensity of DM vector is D = 1 meV (for K = 0
meV). The antiferromagnetic J leads to the 120◦ configuration and the DM interaction induces a
slight upward tilting of the magnetic moments. The corresponding DM vectors are plotted in (c). (d)
Top view for the magnetic ground state of the trimer with K = −6 meV.

120◦ between adjacent moments. The magnetic texture is a compromise involving the
antiferromagnetic J and the DM vectors (plotted in Fig.3.9e). While J tries to make the
moments anti-parallel to each other, the DM vector tends to make them lie in the plane per-
pendicular to the surface and containing at the same time the two pairs of atoms (similar
to the dimer configuration). However, the magnetic moment has to satisfy the DM vectors
arising from its nearest neighbors and therefore, the moment compromises and lies in the
plane perpendicular to the surface and containing the atom of interest and the center of the
hexagon. This is similar to what was found for the compact trimer. To test the stability
of the non-collinear structure, we add the magnetic anisotropy energy and the polar angles
become either 9◦ or 171◦, i.e. a change of ≈ 5◦, which shows that K has a smaller impact
on the hexagon than on the trimer.
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Figure 3.9: Top (a) and side (b) view of the magnetic ground state configuration for a hexagon
made of six atoms. The interadatom distance is d = 10.42 Å, the nearest-neighbors isotropic
exchange interaction is J = 5.64 meV and the intensity of the nearest-neighbors DM vector is
D = 1.67 meV, while magnetic the anisotropy K = 0 meV. The projection of the unit vectors of
the magnetic moments on the surface plane is given in (c) and the projection along the z-axis in (d).
The corresponding DM vectors between the nearest neighbors are plotted in (e).

3.7.4 Heptamer

We add to the previous structure an atom in the center of the hexagon. Contrary to the
other atoms this central atom has six neighbors and the magnetic ground state is profoundly
affected by this addition as shown in Fig. 3.10a-b. The nearest neighbor isotropic exchange
constant J , 4.69 meV, decreases slightly in comparison to the value found for the open
structure. The obtained magnetic texture can be explained from the nearest neighboring
DM interaction (1.37 meV) with the corresponding vectors plotted in Fig. 3.10e. The
addition of the central atom creates frustration similar to the trimer case. Ideally, every
pair of nearest neighboring moments have to lie in the same plane. Thus, the central
magnetic moment has to lie within one of the three planes orthogonal to the surface and
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passing by two of the outer atoms and the central one. In this configuration, the three
atoms are satisfied and the 4 atoms left have the direction of their moments adjusted,
which leads to the final spin-texture. Fig. 3.10c and d show respectively the projection of
the magnetic moment along the z-axis and in the surface plane. Interestingly, when the
single-ion magnetic anisotropy is added only the central moment is affected. It experiences
a switch from the in-plane configuration to a quasi out-of-plane orientation. A side view
is shown in Fig. 3.10f. This is another nice example showing how the stability of the non-
collinear behavior is intimately related to the nature, shape, and size of the nanostructure.
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Figure 3.10: Non-collinear magnetic ground state found for the heptamer with an interadatom dis-
tance d = 10.42 Å, the nearest-neighbors isotropic exchange interaction is J = 4.69 (4.62) meV
and the intensity of the nearest-neighbors DM vector is D = 1.37 (1.36) meV (the values between
parenthesis are for the nearest neighbors on the outer ring), while the magnetic anisotropy K = 0
meV. (a) is the top view and (b) is the side view. The projection of the unit vectors of the magnetic
moments on the surface plane is given in (c) and along the z-axis in (d). The corresponding DM
vectors between the nearest neighbors are plotted in (e). In (f) the side view of the ground state after
adding a single-ion magnetic anisotropy, K, of -6 meV.
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3.8 Transport properties of Rashba electrons
In the previous section, we have seen that the scattering of Rashba electrons at magnetic
impurities results in exchange interactions. This scattering can also be the source of mag-
netotransport properties. In particular, we expect contributions to the planar Hall effect
(PHE), the anomalous Hall effect (AHE), as well as the anisotropic magnetoresistance
(AMR). Both the PHE and AHE are observed as a voltage transverse to the applied cur-
rent [64, 127], while AMR is measured in the longitudinal geometry with respect to the
applied current. Consequently, PHE and AHE are characterized by the transverse resis-
tivity ρxy , while the AMR is characterized by the longitudinal one, ρxx. For PHE, the
in-plane component of the magnetization M‖ with respect to the interface plane matters,
while the AHE depends on the out-of-plane component Mz . Although the AMR has been
known since 1856 [153], the PHE was not discovered until more than a century later [154].
Only recently it was established that the PHE can originate from the AMR without contri-
butions from the AHE [65]. In absence of the SOI and of the magnetism at the impurity,
the diagonal contributions of the resistivity tensor ρxx (ρxx = ρyy) induced by a sin-
gle adatom can be expressed in terms of scattering phase shifts just alike the well-known
expression by Friedel [124]:

ρxx = AF

∑
l

(l + 1) sin2[δl+1(εF)− [δl(εF)] , (3.55)

where the residual resistivity ρxx, at T = 0K, induced by a nonmagnetic impurity with a
spherical potential in a 3D degenerate free electron gas is related to the momentum transfer
cross section of electrons at the Fermi surface given by a sum over the orbital momentum
quantum numbers l. Here, AF is a constant prefactor proportional to the inverse of the
Fermi wave vector kF. Similarly to the magnetic interactions, we considered an Fe im-
purity on the Au(111) surface, both nonmagnetic and magnetic, with perpendicular and
arbitrary direction of the impurity moment with respect to the surface plane. If the impu-
rity moment has a component parallel to the surface plane, the transition matrix as well as
the transverse components of the resistivity tensor are nonzero, even when the perturbing
potential v(~r) has cylindrical symmetry, and a PHE is found. We follow the longitudinal
resistivity and the AMR as a function of the spin-orbit strength and the transverse resis-
tivity and the PHE as a function of the orientation of the magnetic impurity moment with
respect to the surface plane. The AHE is absent since we consider a non spin polarized 2D
Rashba electron gas [64, 127]. Also, we provide a phenomenological functional form for
the different components of the residual resistivity as a function of the orientation of the
magnetic moment.

3.8.1 Scattering States
Another alternative to study the scattering of the Rashba electrons at a single magnetic
impurity is to consider the wave functions instead of the Green functions as in Eq. (3.9).
In order to calculate the scattered wave functions, we exploit the cylindrical symmetry of
the Rashba electron gas. Thus, we introduce the cylindrical coordinates (r, φ) with a radius
r and azimuth φ between the vector ~r and the x-axis, and place the impurity at the origin of
the coordinate system. For this purpose it is more convenient to expand the eigenfunctions
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of the Rashba Hamiltonian (3.1) in terms of the cylindrical Bessel functions rather than
plane waves as:

ψ~k±(~r) =

+∞∑
m=−∞

im e
2m+1

4 iπ ψεm±(~r) . (3.56)

Here

ψεm±(~r) =
e−

2m+1
4 πi

√
2

(
Jm(k±r)eimφ

∓Jm+1(k±r)ei(m+1)φ

)
, (3.57)

for an electron with an energy ε, located in one of the Rashba bands α = ±, and m is the
orbital angular quantum number, m ∈ Z, rather than the wave vector ~k or (k, φ~k). We
note that ψεmα(~r) is an eigenvector for the z component of the total angular momentum
operator jz = lz + ~

2σz with an eigenvalue jz = ~(m + 1
2 ) and lz is the orbital angular

momentum operator. ψεmα(~r) can be decomposed into an incident and an outgoing wave:
ψεmα(~r) = ψin

εmα(~r) + e−(m+ 1
2 )πiψout

εmα(~r). For each band component, the incoming and
outgoing wave functions are respectively cylindrical Hankel functions of second kind (see
Ref. [155] for a similar derivation),

ψin
εm±(~r) =

e−
2m+1

4 πi

2
√

2

(
H

(2)
m (k±r)eimφ

∓H(2)
m+1(k±r)ei(m+1)φ

)
, (3.58)

and first kind,

ψout
εm±(~r) =

e
2m+1

4 πi

2
√

2

(
H

(1)
m (k±r)eimφ

∓H(1)
m+1(k±r)ei(m+1)φ

)
. (3.59)

Their phase factors are chosen such that at large distances (r → ∞) we can express them
as:

ψin
εm±(~r) =

1√
4πk±r

e−ik±reimφ

(
1
∓ieiφ

)
, (3.60)

ψout
εm±(~r) =

1√
4πk±r

eik±reimφ

(
1
±ieiφ

)
, (3.61)

with ψin
εm±(~r) and ψout

εm±(~r) describing 2D cylindrical waves incoming toward and outgo-
ing from the origin of the coordinate system, respectively. They are related by

T̂ ψin
εm±(~r) = ∓iψout

ε, −(m+1), ±(~r) ,

where T̂ denotes the time reversal operator. We then introduce a localized impurity for
convenience placed at the origin of the cylindrical coordinate system of the 2D electron
gas. We describe the elastic scattering of the wave function ψεm±(~r) from the impurity
with the Lippmann-Schwinger equation involving real and spin space coordinates:

ϕεmα(~r) = ψεmα(~r) +

∫
d~r ′d~r ′′ GR(~r, ~r ′, ε) t(~r ′, ~r ′′, ε)ψεmα(~r ′′) , (3.62)

whereGR(~r, ~r ′, ε) and t(~r, ~r ′, ε) are respectively the Rashba Green function and the tran-
sition matrix introduced previously. In the asymptotic region where the impurity potential
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v(~r) vanishes, Eq. (3.62) can be written in a simpler form by using scattering coeffi-
cients C(mα,m′α′). Then, the wave function of an incident electron with quantum state
(ε,m, α) scattering elastically from a non-cylindrical impurity potential placed at the ori-
gin is expressed as

ϕεmα(~r) = ψin
εmα(~r) +

∑
m′,α′

√
kα′

kα
C(mα,m′α′)ψout

εm′α′(~r) . (3.63)

where the factor
√
kα′/kα accounts for the fact that the incoming and outgoing waves,

ψin
εmα and ψout

εmα, carry electron current kM/kα rather than unity due to the relativistic
correction of the velocity operator which will be discussed below. Here, the scattering
coefficients fulfil the unitary condition,∑

m1α1

C(mα,m1α1) C∗(m′α′,m1α1) = δmm′δαα′ , (3.64)

Specifically, the diagonal elements of the above equation with m = m′ and α = α′,∑
m1α1

|C(mα,m1α1)|2 = 1 , (3.65)

ensure a current conservation. For α 6= α′ the coefficients give weight to the inter-band
transition during the scattering. For m 6= m′, the direction of ~k and thus the total angular
momentum component of the Rashba electrons changes during the scattering process, and
the scattering coefficients refer to the amplitude of the intra-band scattering. When v(~r)
has a cylindrical symmetry, i.e. v(~r) = v(r), the orbital quantum number m is conserved
and C(mα,m′α′) simplifies to C(mα,mα′) δm,m′ . The scattered wave function will be
a linear combination of the spin-splitted eigenstates denoted by the + and − bands. This
mixing is due to the spin-flip inter-band transitions whose origin is the off-diagonal part of
the Rashba GreenGR(~r, ~r ′, ε) function coming from the spin-orbit interaction.

3.8.2 Cylindrical expansion of the Green function and the t-matrix
We present the relation between the scattering coefficients C(mα,mα′) and the t-matrix
t(~r, ~r ′, ε) elements in the orbital momentum representation. For this purpose, it is conve-
nient to express the Rashba Green function in terms of solutions of the Rashba Hamilto-
nian (3.1) in the cylindrical coordinate system presented in Sec. 3.8.1. In order to derive
the Green function, we fix ~r ′ and consider GR(~r, ~r ′, ε) to be a function of ~r. Then,
GR(~r, ~r ′, ε) are found to be a linear combination of the solutions given by Eq. (3.57) and
the out-going solutions (so-called irregular solutions) given by Eq. (3.59). Furthermore,
by taking account of the cusp condition of the Green function at r = r′, it is easy to derive,

GR(~r, ~r ′, ε) =
2

i (k+ + k−)
(3.66)

×
{ ∑

mα kα ψ
out
εmα(~r)ψ†εmα(~r ′) e−i(m+ 1

2 )π for r > r′ ,∑
mα kα ψεmα(~r) (ψout

εmα(~r ′))† ei(m+ 1
2 )π for r < r′ .
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Using Eqs. (3.66) and (3.62), one arrives at this general expression for the scattering coef-
ficients:

C(mα,m′α′) =

[
δmm′δαα′ +

2kα′

i(k+ + k−)

× 〈ψεm′α′ | t(ε) |ψεmα〉
] √

kα
kα′

e−i(m′+ 1
2 )π .

(3.67)

When the magnetic moment of the impurity is along the z-axis, then the t-matrix is di-
agonal in spin space. Furthermore, if the impurity potential is cylindrical, the orbital
momentum representation of tσσ(~r, ~r ′, ε) with σ ∈ {↑, ↓} reads

tσσ(~r, ~r ′, ε) =
1

2π

∑
m

eimφ tσσm (r, r′, ε) e−imφ′ . (3.68)

The derivation of tσσm (r, r′, ε) is given in Appendix A.

3.8.3 Residual resistivity tensor from linear response theory
In Sec. 2.6.1, we discussed the spin-spin correlation function (magnetic susceptibility)
within the Kubo formalism to study the linear response of our system to a time-dependent
external magnetic field. A similar approach can be used to study the response of our system
to external perturbing electric fields. Indeed using the Kubo linear response formalism
[156], we can show that the components of the resistivity tensor, ργγ′ , measuring the
potential drop in direction γ after applying an electric field in direction γ′, in the DC limit
ω→ 0 are given in terms of the scattering solution ϕεmα by

ργγ′ = lim
ω→0

πω

Sn2
ee

2

∑
i,j

δ(εj − εi − ~ω)(f(εi)− f(εj))

× 〈ϕi|m∗v̂γ |ϕj〉 〈ϕj |m∗v̂γ′ |ϕi〉 ,

(3.69)

where γ, γ′ ∈ {x, y}, the indices i, j stand each for (ε,m, α), ne is the surface electronic
density, S denotes the area of the surface, e is the electron charge, and f(εi) = Θ(εF− εi)
is the occupation number for the energy level εi at T = 0 K. Here, ne is related to the
Fermi wave numbers of the two bands, kF+ and kF−, by

ne =
1

4π

(
k2

F+ + k2
F−
)

, (3.70)

and in low impurity limit, the factor 1
S from Eq. (3.69) represents the impurity density ni.

Also, one needs in Eq. (3.69) the relativistic velocity operator: ~̂v =
ˆ̇
~r = i

~ [HR, ~̂r] with ~̂r
being the position operator, i.e.,

v̂x = −i
~
m∗

∂

∂x
+

~
m∗

ksoσy ,

v̂y = −i
~
m∗

∂

∂y
− ~
m∗

ksoσx .
(3.71)
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In addition to the prefactor ω, the summation over states i and j in Eq. (3.69) gives rise
to another factor ω, since εi must satisfy the condition, εF − ~ω ≤ εi ≤ εF. In spite of
this, the right-hand side of Eq. (3.69) takes a finite limiting value in the limit of ω → 0,
since the matrix elements 〈ϕi|m∗v̂γ |ϕj〉 evaluated for the asymptotic scattering region
(r → ∞) diverge as 1

ω in the limit of ω → 0, as shown in Appendix D. By inserting the
matrix elements of the momentum operators in the limit of ω → 0 given in Appendix D
into Eq. (3.69), one can derive the most general expression for the diagonal components
of the resistivity tensor,

ργγ =
~k2

FM

8πSn2
ee

2

∑
mα,m′α′

∣∣∣(δm′,m+1 ± δm′,m−1)δαα′

+
∑
lα′′

C(mα, lα′′)C∗(m′α′, l + 1α′′)

±
∑
lα′′

C(mα, lα′′)C∗(m′α′, l − 1α′′)
∣∣∣2 , (3.72)

where kFM = kM(εF) and the plus and minus signs correspond to ρxx and ρyy, respec-
tively. In deriving Eq. (3.72) we replaced in (3.69) the sum

∑
i over discrete states by

1
2π

∑+∞
m=−∞

∑
α=±

∫ +∞
0

kαdkα. The scattering coefficients C(mα,m′α′) are implicitly
energy dependent. After integrating over kα these coefficients will be taken at the Fermi
level, εF. In the case of absence of the impurity, the resistivity vanishes since the scattering
coefficients are given in this case simply by C(mα,m′α′) = δmm′δαα′e

−i(m+1/2)π . If
the scattering potential is cylindrically symmetric as seen from Eq. (3.67), the scattering
coefficient C(mα,m′α′) becomes diagonal with respect to m and m′, and the expression
for the resistivity, Eq. (3.72), is further simplified as

ργγ =
~k2

FM

8πSn2
ee

2

∑
mα,m′=m±1 α′

∣∣∣δαα′ +
∑
α′′

C(mα,mα′′)C∗(m′α′,m′α′′)
∣∣∣2 . (3.73)

Obviously, the two diagonal components, ρxx and ρyy, are identical in this case.

3.8.4 Resistivity tensor in absence of the spin-orbit interaction
Here, we consider the limit of kso → 0 to derive the expression of the residual resistivity
induced by a localized impurity for the 2D free-electron gas without the Rashba spin-
orbit term. This may be useful since the derivation of this quantity has not appeared in
the literature to our knowledge. For this purpose, it is better to choose energy ε, orbital
angular momentum m, and spin index σ as the quantum numbers for the description of
scattering states, where the spin quantization axis is chosen as the z axis as in previous
sections. Namely, instead of Eqs. (3.58) and (3.59), we employ

ψ̃in
εmσ(~r) =

1

2
e−

2m+1
4 πiH(2)

m (kr)eimφ|σ〉 , (3.74)

and
ψ̃out
εmσ(~r) =

1

2
e

2m+1
4 πiH(1)

m (kr)eimφ|σ〉 , (3.75)
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as the incident and scattered electron wave functions, where k =
√

2m∗ε/~, |↑〉 = (1, 0),
and |↓〉 = (0, 1). Then, the wave function of an incident electron with quantum state
(ε,m, σ) scattering elastically from a non-cylindrical impurity potential placed at the ori-
gin is expressed as

ϕ̃εmσ(~r) = ψ̃in
εmσ(~r) +

∑
m′,σ′

C̃(mσ,m′σ′)ψ̃out
εm′σ′(~r) . (3.76)

By following the same procedure, we can easily show that the resistivity tensor for the
present case with αso = 0 is given exactly in the same form as Eq. (3.72), except that kFα
is replaced by kF =

√
2m∗εF/~, the scattering coefficients of the type C(mα,m′α′) are

replaced by C̃(mσ,m′σ′), and further the summation over band indices is replaced by the
one over spin indices. Furthermore, if the t-matrix is diagonal with respect to electron spin
and the impurity potential has cylindrical symmetry, we can derive a simplified expression
corresponding to Eq. (3.73),

ργγ =
~k2

F

8πSn2
ee

2

∑
m,m′=m±1,σ

∣∣∣1 + C̃(mσ,mσ)C̃∗(m′σ,m′σ)
∣∣∣2 , (3.77)

where it should be noted that, in contrast to the Rashba electrons with a finite αso, the
spin-flip scattering does not occur in the present case. The scattering coefficient in the
above equation can be expressed by using the phase shift as:

C̃(mσ,mσ) = e−(m+ 1
2 )πi+2iδσσm (ε) . (3.78)

By inserting this expression into Eq. (3.77), we obtain finally

ργγ =
2~

Snee2

∑
σ=↑↓

+∞∑
m=−∞

sin2
[
δσσm+1(εF)− δσσm (εF)

]
, (3.79)

where we used the relation k2
F = 2πne. This is a modification of Friedel’s result [124] for

the residual resistivity of a single impurity in a 3D electron gas to the case of an impurity
in a 2D electron gas without the Rashba SOI term. The only difference is the scattering
phase space of momentum transfer in the field direction, which is larger in the 3D case
than in 2D. This is taken care of by the multiplicity ` + 1 of each angular momentum
component as shown in Eq. (3.55).

3.8.5 Residual resistivity tensor within the s-wave approximation

We aim at deriving the general expression of the impurity resistivity when the t-matrix
is given by Eq. (3.13). First, we note that by using Eq. (3.67), the scattering coefficients
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C(mα,m′α′) for m and m′ equal to 0 or −1 are given by:

C(0α, 0α′) =
1

i
δαα′ −

√
kαkα′

2kM
t↑↑(ε) ,

C(−1α,−1α′) = i δαα′ +

√
kαkα′

2kM
s(α)s(α′) t↓↓(ε) ,

C(0α,−1α′) =

√
kαkα′

2ikM
s(α′) t↓↑(ε) ,

C(−1α, 0α′) =

√
kαkα′

2ikM
s(α) t↑↓(ε) ,

(3.80)

where s(α) is defined by s(±1) = ∓1. For m and m′ larger than 0 or smaller than −1,
we have

C(mα,m′α′) = δmm′δαα′e
−i(m+ 1

2 )π . (3.81)

The expression of the impurity resistivity can be obtained by inserting Eqs. (3.80) and
(3.81) into Eq. (3.72), where twelve pairs of (m,m′) make a non-vanishing contribution
to the resistivity. After a lengthy calculation, one obtains

ργγ =
~k2

FM

2πSn2
ee

2

[∑
σ,σ′

|tσσ′(ε)|2 −
(
kso

kFM

)2

(M(ε)∓N(ε))
]

, (3.82)

with

M(ε) ≡ Re
(

[t↑↑(ε)]∗ t↓↓(ε)
)

+
1

2
(|t↑↓(ε)|2 − |t↓↑(ε)|2)2 , (3.83)

N(ε) ≡ Re
(

[t↑↓(ε)]∗ t↓↑(ε)
)
−1

2
Re
[
([t↑↑(ε)]∗ − [t↓↓(ε)]∗) t↓↑(ε)

−(t↑↑(ε)− t↓↓(ε)) [t↑↓(ε)]∗
]2

,

(3.84)

where the t-matrix should be evaluated at the Fermi energy and the negative and positive
signs in Eq. (3.82) correspond to ρxx and ρyy, respectively. In deriving the above equa-
tions, we have used the general relation for the t-matrix (optical theorem), t(ε)− t†(ε) =
−i t(ε) t†(ε), implying in the case of a 2×2 matrix that:

Im t↑↑(ε) = −1

2

(
|t↑↑(ε)|2 + |t↓↑(ε)|2

)
,

Im t↓↓(ε) = −1

2

(
|t↓↓(ε)|2 + |t↑↓(ε)|2

)
,

[t↑↓(ε)]∗ − t↓↑(ε) = i
(
t↑↑(ε) [t↑↓(ε)]∗ + [t↓↓(ε)]∗ t↓↑(ε)

)
.

(3.85)

Because of the above relations, M(ε) and N(ε) in Eqs. (3.83) and (3.84) may be ex-
pressed in many apparently different but equivalent ways. Although the t-matrix has no
spin-orbit interaction it can have non diagonal elements due to a non-collinear orientation
of the magnetic moment according to the z-axis perpendicular to the surface plane (see
Sec. 3.8.6).
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3.8.6 Residual resistivity tensor results and discussions
We investigate the example of Fe adatoms on Au(111) surface with an area S = 1 m2 (unit
area) similarly to magnetic interactions among magnetic adatoms. We will consider that
the Fe impurities are described with the t-matrix given in Eq. (3.13). The advantages of
this approximation are the fast numerical evaluation of the scattering coefficients given in
Eq. (3.67) and an easy tracking of the impact of scattering on the resistivity. Furthermore,
since our scheme is based on linear response theory, only the phase shift at the Fermi
energy is essential. Considering the density of states for Fe adatom shown in Fig. 3.2a we
can approximate δ↓↓0 (εF) = π

2 in the minority-spin channel and the majority-spin channel
is considered fully occupied, thus, the corresponding phase shift is set to δ↑↑0 (εF) = π.
In contrast, the phase shift for the non-magnetic impurity is shown in Fig. 3.2b where
the charge conservation (see Friedel sum rule in Eq. (3.14)) imposes then that δ↑↑0 (εF) =

δ↓↓0 (εF) = 3π
4 .

Considering the approximations mentioned above one can investigate the residual re-
sistivity for both cases: magnetic and non-magnetic Fe adatoms. To start our analysis,
we consider a magnetic moment pointing perpendicular to the surface. Also to make our
study general, we explore different SOI strengths, which then would correspond to the
deposition of the impurities on different substrates. To make this type of investigations
consistent with each other, the energy of the highest occupied state of the Rashba electron
gas measured from the bottom of the energy dispersion curve, εRashba

F = εF + ~2

2m∗ k
2
so,

is set to a constant, 480 meV for the case of Au(111) surface state characterized by an
effective mass m∗ = 0.255me [119]. By changing kso, εF is modified such that εRashba

F

does not vary. By inserting t↑↑(εF) = i (eiδ↑↑0 (εF) − 1), t↓↓(εF) = i (eiδ↓↓0 (εF) − 1), and
t↑↓(εF) = t↓↑(εF) = 0 into Eq. (3.82), we obtain as the resistivity induced by a magnetic
adatom with its magnetic moment pointing to the normal direction,

ργγ =
2~k2

FM

πSn2
ee

2

[
sin2(δ↑)+sin2(δ↓)−

(
kso

kFM

)2

sin(δ↑) sin(δ↓) cos(δ↑−δ↓)
]

, (3.86)

where δ↑ and δ↓ are abbreviations of δ↑↑0 (εF) and δ↓↓0 (εF), respectively. Thus, for the
non-magnetic adatom with δ↑ = δ↓ = 3π

4 ,

ργγ =
2~k2

FM

πSn2
ee

2

[
1− 1

2

(
kso

kFM

)2
]

, (3.87)

ργγ is always a positive quantity and for the magnetic adatom with δ↑ = π and δ↓ = π
2 ,

we simply have

ργγ =
2~k2

FM

πSn2
ee

2
, (3.88)

where kFM and ne are related to εRashba
F , which is kept constant in the numerical calcu-

lation, by k2
FM =

2m∗εRashba
F
~2 and ne =

m∗εRashba
F
π~2 +

k2so
2π . The latter leads to a quadratic

decrease of the prefactor 2~k2FM

πSn2
ee

2 and thus of the residual resistivity with respect to k2
so.

This simply indicates that the more available electrons, the more conducting the system
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becomes. The intriguing dependence of ne on the SOI strength can be traced back to the
particular behavior of the density of states of the Rashba electron gas, which is charac-
terized by two regimes induced by the SOI and defined by the two regions of the energy
dispersion curve that show a crossing at k = 0 (see Eq. (3.4)). At energies below the cross-
ing, the corresponding density of states follows a quasi one-dimensional behavior where
a van Hove singularity occurs at the bottom of the bands. Above the crossing, the density
of states is a constant as expected for a 2D electron gas. By increasing the SOI strength,
the quasi one-dimensional region becomes larger in order to keep εRashba

F constant, which
leads to the quadratic dependence of ne on kso and explains the strong drop of the residual
resistivity when increasing the SOI strength.

The latter can be observed in Fig. 3.11, where the longitudinal residual resistivity as
function of the SOI strength is depicted. The transversal residual resistivity is not shown
since it is zero for the two cases considered: magnetic (out-of-plane moment) and non-
magnetic adatoms. Interestingly, magnetism and the SOI strength have opposite impact
on the residual resistivity. This holds for spin-dependent phase shifts that conserve the
number of electrons ne of the impurity after spin-polarization. Indeed, as may be seen
from Eq. (3.86), in contrast to magnetism, the SOI tends to decrease the resistivity. The
largest resistivity is found when the SOI is switched off, This would be the case for a
Cu(111) surface for example. For the phase shifts we used to model the magnetic impurity
(δ↑ = π, δ↑ = π

2 ) and the non-magnetic impurity (δ↑ = δ↑ = 3π
4 ), the residual resistivity

is independent from the magnetic nature of the adatom, as can be deduced from Eq.(3.86)

ργγ =
4~

Snee2

[
sin2(δ↑) + sin2(δ↓)

]
. (3.89)

Fermi surface analysis for the Residual resistivity tensor

Now, we address the dependence of the residual resistivity on the magnetism of the im-
purity by analyzing the different scattering processes allowed at the Fermi surface. The
possible elastic scattering processes can be found by evaluating the probability for an elec-
tron scattering from a state |ψ~kα〉 to a state |ψ~k′α′〉:

Pαα
′

~k~k′
=

2π

~
| 〈ψ~k′α′ | t(ε) |ψ~kα〉 |2 δ(εα(~k)− εα′(~k′)) , (3.90)

where ψ~kα are given by Eq. (3.2) and α is the band index. If the impurity is non-magnetic,
the diagonal elements of the t-matrix in spin space are equal: t↑↑(ε) = t↓↓(ε) = t(ε). In
this case, the electron scattering probabilities are given by

Pαα
′

~k~k′
=

π

2~
|t(ε)|2(1 + αα′ cos (φ~k − φ~k′)) δ(εα(~k)− εα′(~k′)) , (3.91)

where αα′ equals 1 for intra-band scattering transitions (α = α′) or -1 for inter-band tran-
sitions (α 6= α′). This equation shows that inter-band and intra-band transitions flipping
the spin are not allowed since in these cases, φ~k−φ~k′ = π with αα′ = 1 and φ~k−φ~k′ = 0
with αα′ = −1, respectively (see Fig. 3.12a). In the case of a magnetic impurity with a
moment perpendicular to the surface, the t-matrix is given by Eq. (3.12) and all transitions
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Figure 3.11: Evolution of the diagonal components of the resistivity tensor as a function of the
spin-orbit wave vector magnitude (kso) for a magnetic and a non-magnetic Fe impurity.

are allowed, even those leading to a spin-flip, as depicted in Fig. 3.12b. Here the electron
scattering probabilities

Pαα
′

~k~k′
=

2π

~
|t↑↑(ε) + αα′t↓↓(ε) ei(φ~k−φ~k′ )|2 δ(εα(~k)− εα′(~k′)) , (3.92)

which is different from zero independently from the value of φ~k − φ~k′ . This is due to the
magnetic moment of the impurity which breaks the time-reversal symmetry. Thus, there
are more scattering possibilities than in the non-magnetic case, and therefore for magnetic
impurities a higher residual resistivity is expected compared to non-magnetic impurities
in-line with Fig. 3.11.

Residual resistivity tensor for magnetic moments breaking cylindrical symmetry

Up to now, the magnetic moment was considered perpendicular to the surface plane. To
generalize our study, we explore the impact of arbitrary orientations, ~e~M, of the impu-
rity moment, ~M, on the residual resistivity. The resistivity is a tensor, and contrary to
the case of an out-of-plane magnetic orientation, its off-diagonal elements become finite
for arbitrary magnetization directions giving rise to the AMR and PHE. To tackle this
problem, we rotate the impurity magnetic moment pointing initially normal to the surface
plane, ~ez , by means of the conventional 3 × 3 rotation matrices R ∈ SO(3) by a polar
angle θ~M between the direction of the magnetic moment and the z-axis and an azimuthal
angle φ~M, ~e~M = Rz(φ~M)Ry(θ~M)~ez . This translates to a unitary transformation of the
t-matrix in spin space t′(~r, ~r ′, ε) = U(θ~M, φ~M) t(~r, ~r ′, ε)U †(θ~M, φ~M). U(θ~M, φ~M) =
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Figure 3.12: Fermi surfaces scattering processes of Rashba electrons at a non-magnetic impurity (a),
magnetic impurity with an out-of-plane magnetic moment (b), in-plane magnetic moment pointing
along the x-direction (c) and along the y-direction (d). The transitions between circles with different
colors are interband transitions, while transitions between circles with the same color are intraband
transitions. The green arrows indicate the connection between the initial and final state. The crosses
indicate prohibited scattering processes, while the black arrows at the center of the Fermi contours
represent the direction of the impurity magnetic moment.
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U(Rz, φ~M)U(Ry, θ~M) are the conventional rotation operators in SU(2) whose represen-
tation in terms of a 2× 2 matrix is given by U(Rγ , β) = cos(β/2)⊗ 12 − i sin(β/2)σγ .
The t-matrix for an arbitrary rotation angle of the moment can then be expressed in terms
of the spin diagonal elements, t↑↑(ε) and t↓↓(ε), describing the out-of-plane moment (see
Eq. (3.12)) as:

t′(ε) =
1

2
(t↑↑(ε) + t↓↓(ε)) 12 +

1

2
(t↑↑(ε)− t↓↓(ε)) ~σ · ~e~M , (3.93)

where for simplicity we omitted the ~r dependence in the t-matrix. For given values of
{θ~M, φ~M} the matrix t′(~r, ~r ′, ε) might have non-zero off-diagonal components. We note
that we chose to define the azimuthal angle with respect to the x-axis being the direction
of the perturbing current. The longitudinal and transversal components of the residual
resistivity in the whole phase space of rotation angles is depicted in Fig. 3.13a and b. The
images exhibit a clearly visible angular dependence. The anisotropy of the resistivity is in
the order of 10−8 nΩ. In case of the longitudinal resistivity this anisotropy modifies the
isotropic contribution of the longitudinal resistivity, which is in the order of 3.180× 10−5

nΩ by about ±0.14 %. Since for the transversal resistivity the isotropic contribution is
exactly zero, the anisotropies are given as absolute values.

Angular dependence of the residual resistivity tensor

Now we turn to the analysis of the angular dependence of the resistivity anisotropy. To the
best of our knowledge, no phenomenological functional form for such a general angular
dependence is available in the literature contrary to the case, for example, where the mag-
netization is lying in-plane [157]. Therefore to simplify our analysis, we focus first on the
particular orientation of the magnetic moment along the x-direction. There, the t-matrix
given by Eq. (3.93) is expressed as

t′(ε) =
1

2

(
t↑↑(ε) + t↓↓(ε) t↑↑(ε)− t↓↓(ε)
t↑↑(ε)− t↓↓(ε) t↑↑(ε) + t↓↓(ε)

)
, (3.94)

where t↑↑(ε) and t↓↓(ε) are the upper and lower diagonal components of the t-matrix when
the magnetic moment points along the z-direction. As we will discuss below, this gives
rise to a non-zero off-diagonal contribution in the resistivity tensor and contributes to the
PHE even without spin-orbit contribution at the impurity site. When the magnetic moment
is in the surface plane (θ~M = π

2 ), Fig. 3.13c and d show the behaviour of the diagonal and
off-diagonal components of the resistivity tensor, respectively, as function of the azimuthal
angle φ~M. The trace of the resistivity tensor is conserved under these azimuthal rotations
(ρxx + ρyy = constant,∀φ~M) while the off-diagonal components are related by ρxy =
ρyx. The diagonal components of the resistivity tensor (Fig. 3.13c) can be fitted with the
AMR functional form given by Thompson et al.[157]: ργγ = ρ⊥ + (ρ‖ − ρ⊥) cos2(φ~M),
where ρ‖ and ρ⊥ define the residual resistivities when the moment is respectively parallel
and perpendicular to the current. In our particular case, the current is pointing along the x-
direction, thus ρ‖ = ρxx(φ~M = 0) and ρ⊥ = ρxx(φ~M = π

2 ). It turns out that (ρ‖−ρ⊥), i.e.
the maximal value of the AMR, is a positive quantity as expected for a Rashba electron
gas [158]. This can be explained by analyzing the different scattering processes on the
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Fermi surface when the impurity magnetic moment is in-plane (see Figs. 3.12 (c) and
(d)). As done previously, the idea is to evaluate the scattering probabilities for an arbitrary
rotation of the magnetic moment (see Eq. (3.93)). Here we provide the results obtained
for scattering processes from φ~k = 0 to φ~k′ = 0 or π. If φ~k′ − φ~k = 0 only inter-band
transitions, i.e. α 6= α′, can contribute:

Pαα
′

~k~k′
=

2π

~
|t↑↑(ε)− t↓↓(ε)|2(cos2 θ~M +sin2 θ~M cos2 φ~M) δ(εα(~k)−εα′(~k′)) , (3.95)

which is zero if the moment points along the y-direction. This is the same result obtained
for intra-band scattering probability, Pαα~k~k′ , when φ~k′ −φ~k = π. For the later angle config-
uration, the inter-band scattering probability is non-zero independently from the rotation
angle of the moment:

Pαα
′

~k~k′
=

2π

~
|t↑↑(ε) + t↓↓(ε) + α(t↑↑(ε)− t↓↓(ε)) sin θ~M sinφ~M|2 δ(εα(~k)− εα′(~k′)) .

(3.96)
To summarize, when the magnetic moment points along the current direction (x-direction)
the back-scattering is due to inter-band and intra-band scattering. However when the mag-
netic moment is perpendicular to the current direction then the back-scattering is only
originating from inter-band transitions, which induces a smaller residual resistivity and
therefore gives a positive maximal value of the AMR, i.e. ρ‖ > ρ⊥. Similar scattering
processes are possible when the moment points along the x-direction or the z-direction,
which explains that the resistivities are the same for both magnetic orientations. On the
other hand the off-diagonal components of the resistivity tensor (Fig. 3.13d) could be fitted
with the PHE functional form [157] ργγ′ = (ρ‖ − ρ⊥) cos(φ~M) sin(φ~M). We notice that
for the considered polar angles (θ~M = π

2 , θ~M = π
4 ), ργγ′ changes sign when φ~M crosses

π
2 (Fig. 3.13d). This is accompanied by a direction switch of the Hall like electric field
originating from the PHE.

Let us go back to the general case, where the magnetic moment points in arbitrary
orientations. As mentioned earlier, a phenomenological functional form for the residual
resistivity has not been proposed up to now. In Appendix E, we derive phenomenologi-
cal functional forms for the residual resistivity tensor and show that the longitudinal and
transversal parts follow a simple angular dependence:

ρxx = ρ‖ − (ρ‖ − ρ⊥) sin2(φ~M) sin2(θ~M) , (3.97)

ρxy = (ρ‖ − ρ⊥) cos(φ~M) sin(φ~M) sin2(θ~M) . (3.98)

These equations describe perfectly the angular dependence plotted for instance in Fig. 3.13c
and d with the polar angle θ~M = π

2 (black curve) and θ~M = π
4 (red curve). Alternatively,

one may also derive the angular dependence of the diagonal components of the resistivity
tensor directly from Eq. (3.82). By applying the aforementioned unitary transformations
in spin space, Eq. (3.93), to the t-matrix and substituting its matrix elements into Eq. (3.82)
one yields the diagonal components of the resistivity. In the present case, the second terms
of M(ε) and N(ε), which are proportional to the fourth power of tσσ

′
(ε), vanish identi-
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cally and one obtains

ρxx =
2~k2

FM

πSn2
ee

2

[
sin2(δ↑) + sin2(δ↓)

−
(
kso

kFM

)2

sin(δ↑) sin(δ↓) cos(δ↑ − δ↓)

−
(
kso

kFM

)2
1

2
sin2(δ↑ − δ↓) sin2 θ~M sin2 φ~M

]
,

(3.99)

where similarly to Eq. (3.86), δ↑ and δ↓ are respectively abbreviations of δ↑↑0 (εF) and
δ↓↓0 (εF). Thus, the magnitude of the AMR, i.e., ρ‖ − ρ⊥ in Eq. (3.97) is given by

ρ‖ − ρ⊥ =
~k2

so

πSn2
ee

2
sin2(δ↑ − δ↓) ≥ 0 , (3.100)

indicating that the maximal value of the AMR occurs when the difference between the
phase shifts of both spin components becomes equal to π

2 .

3.9 Orbital magnetization in a Rashba electron gas
So far, we have seen that the deposition of magnetic impurities on a Rashba electron
gas generates numerous effects including: RKKY exchange interactions among magnetic
impurities and magnetotransport properties. Here, we address the lifting of the orbital
degeneracy in the Rashba electron gas due to the presence of magnetic impurities. The
orbital magnetization originates from a different source than the spin magnetization. The
latter one is due to a spin-splitting between the majority and minority spin channels, while
former one arises from bound currents. Classically, the orbital magnetization and these
bound currents are related via:

~j(~r) = ~∇~r × ~ml(~r) , (3.101)

where ~ml(~r) is the orbital magnetization density, ~j(~r) is the bound current density. In
equilibrium, ~j(~r) fulfills the continuity equation for the charge density:

∂n(~r)

∂t
+ ~∇~r ·~j(~r) = 0 . (3.102)

In quantum mechanics the existence of bound currents requires the breaking of time rever-
sal symmetry combined with the SOI, which is described by the term linear in momentum
in the Rashba HamiltonianHR (see Eq. (3.1)). The breaking of time reversal symmetry is
provided by the spin moment carried by magnetic impurities. More recently, a new way
of coupling the spin and orbital moments has been found [159, 77]. Indeed, non-collinear
spin textures create a vector potential that couples the spin degree of freedom to orbital
one. In order to illustrate this, we consider a 2D electron gas coupled to a magnetic spin
texture:

Hnc =
~p 2

2me
12 + Jc ~n(~r) · ~σ . (3.103)
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Hnc is the Hamiltonian describing the 2D electron gas in presence of the spin texture,
Jc represents the coupling parameter of the electrons to the magnetic texture, ~n(~r) is
the direction of the magnetization field. When applying an SU(2) gauge transformation
U(~r) = ei ~w(~r)·~σ (~w(~r) describes the spin rotation) that diagonalizes the Hamiltonian at
each point ~r, we obtain the HamiltonianH ′nc in the local frame of the magnetization:

H ′nc =
~Π

2

2me
+ Jc σz . (3.104)

~Π is the kinetic momentum and contains two contributions:

Πµ = pµ 12 − ~
∑

ν=x,y,z

∂µwν(~r)σν .

= pµ 12 −Aµ
nc(~r) .

(3.105)

where µ = {x, y}, ~Anc(~r) can be viewed as a gauge-field. Since [Ax
nc,A

y
nc] 6= 0, it makes

~Anc(~r) a non-abelian gauge field often called the Yang-Mills field [160]. The kinetic
energy is then constituted of four terms:

~Π
2

2me
=

1

2me

[
~p 2 + ~Anc(~r) · ~p+ ~p · ~Anc(~r) +

(
~Anc(~r)

)2
]

. (3.106)

The first term in the previous equation is a spin independent part, the second term couples
the orbital degree of freedom to the spin, while the third term gives a Zeeman-like con-
tribution and the last term is a non-spin-dependent potential-like contribution. Therefore,
one can see that non-collinear spin moments contribute to the Hamiltonian in a similar
way as the SOI does and give rise to a finite orbital magnetization.

3.9.1 Rashba spin-orbit interaction as a vector field
The linear term in momentum accounting for the SOI in the Rashba Hamiltonian (see
Eq. (3.1)) can be viewed as a gauge field, similarly to the gauge field of a 2D electron
gas coupled to a non-collinear spin texture, the spin-orbit gauge field ~Aso is a non-abelian.
The formulation of the SOI in terms of gauge field allows to interpret Rashba electron as a
free 2D electrons with spin-dependent phases. The spin-orbit (SO) gauge field is defined
as [161, 162]:

~Aso =
m∗c αso

e~
(−σy,σx) , (3.107)

The Rashba Hamiltonian from Eq. (3.1) is re-expressed using the SO gauge field as:HR = 1
2m∗

(
~p− e

c
~Aso

)2

− Vso 12 ,

Vso =
m∗α2

so
~2 is a constant .

(3.108)

The previous equation shows that due to the presence of the SO gauge field, the kinetic
momentum ~p is corrected, thus, we expect a correction of the current operator which is
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the main ingredient required to access the orbital magnetization. In order to derive the
expression of the current operator in presence of the SO gauge field, we start from the
time-dependent Schrödinger equation for Rashba electrons:

i~
∂ψ(~r, t)

∂t
= HR ψ(~r, t) , (3.109)

which is used to write a continuity equation for the electron density n(~r, t) = |ψ(~r, t)|2.
From the continuity equation given in Eq. (3.102), one can easily identify the divergence

of the current density ~j(~r, t), thus, defining the current operator ~̂j as:

~̂j =
~

2m∗i
lim
~r ′→~r

(~∇~r − ~∇~r ′)−
e

m∗c
lim
~r ′→~r

~Aso . (3.110)

The details of derivation for the current operator are given Appendix F. The first term in
Eq. (3.110) is the paramagnetic contribution to the current operator, while the second term
is a diamagnetic-like contribution due to the SO gauge field. In presence of a finite spin
magnetization, an extra Zeeman-like contribution to the current is present and reads [163]:

~̂jz =
~

2m∗
lim
~r ′→~r

~∇~r × ~σ . (3.111)

The latter one can be derived from an expansion of the Dirac equation and retaining terms
up v2

c2 , similarly to the procedure discussed in Sec. 2.4.5 to obtain the SOI. Combining
Eq. (2.26) and Eq. (3.111) the Zeeman current density~jz(~r) can be related to induced spin
magnetization density given in Eq. (3.22) via:

~jz(~r) =

∫ εF

−∞
dε ~∇~r × ~m(~r, ε) . (3.112)

The previous equation shows that the connection between the Zeeman current density
and the spin magnetization is similar to the relation of the current density (excluding the
Zeeman contribution) and the orbital magnetization given in Eq. (3.101).

3.9.2 Ground state charge current induced by a single magnetic im-
purity on a Rashba electron gas

As discussed previously, the introduction of a magnetic moment breaking the time reversal
symmetry in the system is expected to create a finite orbital moment due to the presence
of the SOI. This can be achieved by the deposition of magnetic impurities on the Rashba
electron gas. The Green function connecting a point ~r to ~r ′ within the Rashba electron gas
in presence of magnetic impurities is given similarly to Eq. (3.36) by:

G(~r, ~r ′, ε) = GR(~r, ~r ′, ε) +
∑
ij

GR(~r, ~Ri, ε)T ij(ε)G
R(~Rj , ~r

′, ε) . (3.113)

The sum runs over the number of magnetic impurities and T ij(ε) is the full scattering ma-
trix connecting two impurities located at the positions ~Ri and ~Rj respectively. GR(~r, ~r ′, ε)
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is the Rashba Green function defined in Eq. (3.6). When dealing with a single impurity
Eq. (3.35) reduces simply to T ij(ε) = ti(ε) δij , the ground state charge current can be
computed analytically. First, we start from the definition of the current density:

~j(~r) = − 1

π
Im
∫ εF

−∞
dεTrσ ~̂j G(~r, ~r ′, ε) . (3.114)

The current operator given in Eq (3.110) contains a gradient acting on the Green func-
tion. Then, if the moment is pointing along the z-direction i.e. perpendicular to the plane
containing the Rashba electron gas, the cylindrical symmetry of the latter one is still con-
served, therefore, it is convenient to use cylindrical coordinates to compute the ground
state charge current. The gradient in cylindrical coordinates is expressed as:

~∇~r =
∂

∂r
~er +

1

r

∂

∂θ
~eθ . (3.115)

~er is the radial unit vector and ~eθ is the azimuthal unit vector. The gradient can be defined
with respect to the position of the impurities ~Ri as:

~∇~ri =
∂

∂ri
~eri +

1

ri

∂

∂θi
~eθi , (3.116)

where ~ri = ~r−~Ri. The radial dependence is only in the Rashba Green functionGR(~r, ~Ri, ε) =
GR(~ri, ε), therefore, the gradient present in the current operator is acting on the latter one
and reads:

~∇~ri G(~ri, ε) =

 ∂GD
∂ri

~eri e−iθi
[
−∂GND

∂ri
~eri + i GND

ri
~eθi

]
eiθi

[
∂GND
∂ri

~eri + i GND
ri
~eθi

]
∂GD
∂ri

~eri

 .

(3.117)
The previous equation shows that the computation of ~∇~ri G(~ri, ε) requires the evaluation
of ∂GD

∂ri
and ∂GND

∂ri
, GD and GND are given by a linear combinations of cylindrical Hankel

functions of zero and first order, respectively (see Eqs. (3.7) and (3.8)). The first order
derivatives of cylindrical Hankel functions of n-th order are given by the following recur-
sive relations:

dHn(x)

dx
=

[
nHn(x)

x
−Hn+1(x)

]
. (3.118)

To access the first order derivative of GD and GND, we only need the first order derivatives
of H0(x) and H1(x): {

dH0(x)
dx = −H1(x) ,

dH1(x)
dx =

[
H1(x)
x −H2(x)

]
.

(3.119)

After computing ~∇~ri G(~ri, ε), we have access to the current density. If we assume that
the spin moment points out along the z-axis, then the cylindrical symmetry of the Rashba
electron gas is preserved, therefore, the current density has only an azimuthal component:

~j(~r) = − ~
πm∗

Im
∫ εF

−∞
dε

[
G2

ND

r
− 2m∗αso

~
GDGND

]
∆ti(ε)~eθ , (3.120)
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where GD and GND are functions of r and ε. ~j(~r) on depends the intrinsic properties of
the impurity, this is encoded in ∆ti(ε) =

(
t↑↑i (ε)− t↓↓i (ε)

)
. The first term in Eq. (3.120)

represents the paramagnetic part of the current density, while the second is the diamagnetic
part. ~j(~r) has no dependence on ~er, thus, it is expected to be swirling around the magnetic
impurity i. An example is shown in Fig. 3.14 for an Fe impurity on the Rashba surface
states of Au(111). The parameters are extracted from first-principles electronic structure
calculations (see Sec. 3.4.1). Fig. 3.14 shows a dissipationless ground state charge current
in agreement with the continuity equation. Eq. (3.120) also shows in a trivial way that in
order to obtain a finite ground state charge current (i.e. an orbital magnetization), on the
one hand, we need a spin moment that breaks the time reversal symmetry with t↑↑i (ε) 6=
t↓↓i (ε). On the other hand, broken spatial inversion symmetry and spin-orbit interaction
giving rise to a nonzero GND. Similar observations where made for magnetic impurities
on superconductors with a Rashba spin-orbit interaction in Ref. [164].

When the spin moment points along the x-direction (in the plane containing the Rashba
electron gas), the cylindrical symmetry is broken, we obtain a more complicated expres-
sion for the current density:

~j(~r) = − ~
πm∗

Im
∫ εF

−∞
dε

([
GND

∂GD

∂r
−GD

∂GND

∂r

]
∆ti(ε) sin θ ~er

+ 4
GD GND

r
∆ti(ε) cos θ ~eθ −

m∗αso

~
[
G2

ND +G2
D

]
∆ti(ε) sin θ ~er

+
m∗αso

~
[
G2

ND −G2
D

]
∆ti(ε) cos θ ~eθ

)
.

(3.121)

The current has components along the radial direction ~er, however, it remains dissipation-
less. The first two terms are coming from the paramagnetic part, while the two last ones
are originating from the diamagnetic part of the current operator.

3.9.3 Orbital magnetization of magnetic impurities on a Rashba elec-
tron gas from ground state charge currents

So far, we have seen that the breaking of time and space inversion symmetry, in presence
of the SOI as shown in Eq. (3.120) allows the existence of ground state charge currents.
These currents give rise to a finite orbital magnetization within the Rashba electron gas. In
the absence of free charge currents and time-dependent external fields, the orbital magneti-
zation ~ml(~r) can be related to the ground state charge current via Eq. (3.101) as discussed
in Ref. [165]. The confinement of Rashba electrons in two dimensions constrains the
direction of the orbital magnetization along the z-axis (i.e. ~ml(~r) = ml,z(~r)~ez). This
uniquely defines the orbital magnetization from the ground state charge current. Indeed,
any arbitrary function ~∇~r ξ(~r) (with ~∇~r × ~∇~r ξ(~r) = 0) which can be added to the orbital
magnetization to generate the same ground state charge current density has to be zero since
~∇~r ξ(~r) = ∂

∂z ξ(x, y)~ez = 0. Therefore, the orbital magnetization can be evaluated using
the classical formula:

~Ml =
1

2c

∫
S

d~r ~r ×~j(~r) . (3.122)
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Figure 3.14: Current density induced by a single Fe impurity on a Au(111) with a magnetic moment
perpendicular to surface plane (along the z-axis). αso = −0.4 eV Å and m∗ = 0.26me are the
Rashba model parameters for the Au(111) surface state. The Fe impurity is considered in the s-wave
approximation (see Sec. 3.3). The current density is swirling around the magnetic impurity.
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S represents the area of the Rashba electron gas. Eq. (3.122) gives access to the total
induced orbital magnetization in the surrounding electron gas but not the orbital magneti-
zation density ~ml(~r). Furthermore, the current density is oscillating and decaying with the
distance as can be seen from Fig. 3.14. However, one needs to integrate numerically ~r×~j
for which the decay with the distance is slower. An alternative route to obtain the orbital
magnetization density is by using Eq. (3.101), and rewriting it as a Poisson equation:

~∇~r ×~j(~r) = ~∇~r × ~∇~r × ~ml(~r) ,

= ~∇~r (~∇~r · ~ml(~r))− ~∇2
~r · ~ml(~r) .

(3.123)

For two dimensional systems, the previous equation reduces to:

∂x jy(~r)− ∂y jx(~r) = −~∇2
~rml,z(~r) . (3.124)

The previous equation is solved numerically using a Fourier transform, the orbital magne-
tization ml,z(~k) in Fourier space reads:

ml,z(~k) = i
ky jx(~k)− kx jy(~k)

k2
x + k2

y

, (3.125)

where jα(~k) is the Fourier transform of jα(~r) defined as:

jα(~k) =

Nr∑
i=1

jα(~ri) e
i~k·~ri . (3.126)

In practice, we considered Nr = 1000 × 1000, which is the number of grid points in real
space contained in a squared simulation box. For an Fe impurity deposited on Au(111),
we choose a box of 400 Å×400 Å. This ensures that ~j(~r) = 0 at the edges of the box to
avoid interactions between the Fe impurity and its periodic copies. ml,z(~k) is then Fourier
transformed back to real space giving access to ml,z(~r). The results obtained for a single
Fe impurity deposited on Au(111) are discussed in the next section.

3.9.4 Orbital magnetization of a single adatom on a Rashba electron
We computed the orbital magnetization ml,z(~r) induced by a single Fe impurity deposited
on a Rashba electron gas parametrized for Au(111) surface state. The map is shown in
Fig. 3.15. The spin moment points along the z-axis, we observe isotropic Friedel oscil-
lations in the induced orbital magnetization around the Fe defect. The oscillations have
two characterizing wave lengths, a short one which is the Fermi wave length λF ∼ 18.5 Å
and a long one induced by the SO interaction λso ∼ 240 Å. The oscillations decay as 1

r
which is slower than the induced spin magnetization (see Sec. 3.4.2). However, ml,z(~r)
is one order of magnitude smaller than the induced spin magnetization [126]. The net
orbital and spin magnetizations induced in the simulation box are Ml,z = 0.58µB and
Ms,z = 2.11µB, respectively.

Fig. 3.16 shows the orbital magnetization when the spin moment points along the x-
direction (in the surface plane). The cylindrical symmetry is broken as shown in Eq. (3.121)
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Figure 3.15: Induced orbital magnetization map for an Fe adatom deposited on Rashba electron gas,
αso = −0.4 eV Å and m∗ = 0.26me are the Rashba model parameters for the Au(111) surface
state. The Fe impurities are given in the s-wave approximation (see Sec. 3.3). The spin moment
points along the z-axis. The orbital magnetization consists of concentric rings centered around the
Fe impurity oscillating with two characteristic wave lengths λF and λso.

for the current density. We also find two oscillation wave lengths (λF and λso), while
ml,z(~r) oscillates around a positive value for x < 0 and around a negative value for
x > 0. However, the oscillations are less pronounced compared to the case where the
impurity has a moment along the z-axis. The order of magnitude and the asymptotic be-
havior of ml,z(~r) at large distances are similar to the out of plane configuration. As shown
in Fig. 3.16 ml,z(x, y) = −ml,z(−x, y), therefore, the net induced orbital magnetiza-
tion in the simulation box vanishes i.e. Ml,z = 0µB, the net induced spin magnetization
vanishes as well.

3.9.5 Orbital magnetization of a dimer on a Rashba electron gas from
ground state charge currents

After discussing the induced orbital magnetization by a single Fe impurity, we now explore
possible interesting effects that can be observed in the orbital magnetization induced by
clusters containing more impurities, starting with a dimer of Fe atoms at d = 10.42 Å
from each other along the x-direction. The interaction of the two Fe impurities via the
Rashba electron gas leads to an antiferromagnetic isotropic exchange interaction J =
3.45 meV. And the DM vector points in y-direction according to the Moriya rules with an
amplitude D = 0.96 meV. The magnetic anisotropy is K = −6.0 meV favoring an out
of plane orientation (see Sec. 3.7). The resulting magnetic ground state is non-collinear,
one impurity moment points along the z-axis, while the second is oriented in the opposite
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Figure 3.16: Induced orbital magnetization map for an Fe adatom deposited on Rashba electron gas,
αso = −0.4 eV Å and m∗ = 0.26me are the Rashba model parameters for the Au(111) surface
state. The Fe impurities are given in the s-wave approximation (see Sec. 3.3). The spin moment
points along the x-axis. The orbital magnetization is strongly anisotropic since mz

l (<) > 0 for
x(>) < 0, it also has two characteristic wave lengths λF and λso.

direction. The opening angle between the moments is θ0 = 171◦.
In Fig. 3.17, we display the map of the orbital magnetization. The cylindrical sym-

metry in the Rashba electron gas is broken due to the presence of the two impurities. We
also notice that for x < 0 and close to the impurity ml,z(~r) > 0, this is similar to the
single impurity with a spin moment along the z-direction. The opposite is observed for
x > 0. Between the two impurities ml,z(~r) tends to zero for x ∼ 0 due to destructive
interferences. The oscillation period is similar the single impurity case with λF ∼ 18.5
Å. Furthermore, the orbital magnetization is of the same order of magnitude compared to
the single impurity configuration, which means that the multiple scattering effects do not
enhance the orbital magnetization within the Rashba electron gas. The net induced orbital
and spin magnetizations in the simulation box are Ml,z = 0.08µB and Ms,z = 0.04µB,
respectively. Finally, when we ignore the DM-interactions, the angle between magnetic
moments of the impurities is θ0 = 180◦ and ml,z(x, y) = −ml,z(−x, y). Thus, the net
induced orbital magnetization in the simulation box vanishes.

3.9.6 Orbital magnetization of trimer on a Rashba electron gas from
ground state charge currents

After studying the orbital magnetization induced by one and two Fe adatoms, we computed
ml,z(~r) for a trimer of Fe atoms deposited on an equilateral triangle keeping the distance
considered for the dimer (d = 10.42 Å). In this case, the isotropic exchange coupling is
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Figure 3.17: Induced orbital magnetization map for a dimer of Fe adatoms deposited along the x-
axis on Rashba electron gas, αso = −0.4 eV Å andm∗ = 0.26me are the Rashba model parameters
for the Au(111) surface state. The Fe impurities are given in the s-wave approximation (see Sec. 3.3).
The magnetic ground state is non-collinear.

antiferromagnetic with J = 3.51 meV. The Dzyaloshinskii-Moriya vector amplitude is
D = 1 meV, it points in the perpendicular direction to the connecting vectors between Fe
adatoms. The magnetic anisotropy isK = −6 meV. The magnetic ground state consists of
three moments almost parallel to the z-axis, where two magnetic moments are tilted with
an angle of 10◦ from the z-axis and the third one points in the opposite direction with an
angle of 173◦ as discussed in Sec. 3.7.

We show in Fig. 3.18 the induced orbital magnetization density map. There is an inter-
ference pattern due to the presence of the three Fe impurities, we see a distinct constructive
interference at the center of mass of the trimer. The orientation of the magnetic moments
breaks theC3v symmetry causing highly anisotropic oscillations inml,z(~r), which has two
different wavelengths (λF and λso) as discussed earlier for a single Fe adatom and displays
a similar 1

r decay of the oscillations at large distances. The net induced orbital magneti-
zation in the simulation box is Ml,z = 0.02µB, while the induced spin magnetization is
Ms,z = 0.05µB.

The trimer is more interesting than the single atom or the dimer since when the chi-
rality is non-vanishing, we expect a finite orbital magnetization in absence of the SOI (see
the discussion in Sec. 3.9). The orbital magnetization originates from the chirality of the
magnetic structure [67]. For this reason, we computed the orbital magnetization for the
trimer considered previously, without SOI. The result is shown in Fig. 3.19. The obtained
ml,z(~r) is two orders of magnitude smaller compared the case where the SOI was present.
It has a three fold rotation symmetry (symmetry of the lattice) independently from the
symmetry of the spin moments. We can explain the presence of an induced orbital magne-
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Figure 3.18: Induced orbital magnetization map for a timer of Fe adatoms in an equilateral trian-
gle geometry, deposited on Rashba electron gas, αso = −0.4 eV Å and m∗ = 0.26me are the
Rashba model parameters for the Au(111) surface state. The Fe impurities are given in the s-wave
approximation (see Sec. 3.3). The non-collinear magnetic ground state is resulting from competing
interactions as discussed in Sec. 3.5.

tization without spin-orbit interaction by computing analytically the ground state charge
currents [166]. First, we expand the Green function in Eq. (3.113) into Born series:

G(~r, ~r ′, ε) =GR(~r, ~r ′, ε) +G(1)(~r, ~r ′, ε)

+G(2)(~r, ~r ′, ε) +G(3)(~r, ~r ′, ε)

+G(4)(~r, ~r ′, ε) +G(5)(~r, ~r ′, ε) + ... .

(3.127)

The previous equation represents an expansion up to the fifth order of the multiple scat-
tering problem. In principle, an expansion up to the third order is enough to show the
contribution of the three atoms simultaneously to the current and the orbital magnetiza-
tion. The higher powers of the expansion can be viewed as higher order contributions and
are to be estimated as well. The different elements of the expansionG(i)(~r, ~r ′, ε) are given
by:

G(1)(~r, ~r ′, ε) =
∑
i

GR(~r, ~ri, ε) ti(ε)G
R(~ri, ~r

′, ε) , (3.128)

G(2)(~r, ~r ′, ε) =
∑
ij

GR(~r, ~ri, ε) ti(ε)G
R(~ri, ~rj , ε)

× tj(ε)GR(~rj , ~r
′, ε) ,

(3.129)
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G(3)(~r, ~r ′, ε) =
∑
ijk

GR(~r, ~ri, ε) ti(ε)G
R(~ri, ~rj , ε) tj(ε)

×GR(~rj , ~rk, ε)tk(ε)GR(~rk, ~r
′, ε) ,

(3.130)

G(4)(~r, ~r ′, ε) =
∑
ijkm

GR(~r, ~ri, ε) ti(ε)G
R(~ri, ~rj , ε) tj(ε)

×GR(~rj , ~rk, ε)tk(ε)GR(~rk, ~rm, ε)

× tm(ε)GR(~rm, ~r
′, ε) ,

(3.131)

G(5)(~r, ~r ′, ε) =
∑
ijkml

GR(~r, ~ri, ε) ti(ε)G
(~ri, ~rj , ε) tj(ε)

×GR(~rj , ~rk, ε) tk(ε)GR(~rk, ~r
′, ε) tm(ε)

×GR( ~rm, ~r
′, ε) tl(ε)‘G

R(~rl, ~r
′, ε) .

(3.132)

In absence of the SOI, the SO gauge field vanishes and the current operator given in
Eq. (3.110) reduces to the paramagnetic contribution and reads:

~̂j =
~

2m∗i
lim
~r ′→~r

(~∇~r − ~∇~r ′) . (3.133)

The paramagnetic current density is computed using Eq. (3.114), where the Green function
is given by Eq. (3.127) and only the third (~j (3)(~r)) and the fifth (~j (5)(~r)) order contribu-
tion are non-zero due to the cyclic properties of the trace, thus, the current density is given
a sum of these two remaining terms:

~j(~r) = ~j (3)(~r) +~j (5)(~r) . (3.134)

The third and the fifth order contributions are given by a convolution of Rashba Green
functions. At a point ~r away from the trimer, the Rashba Green function decays as 1√

r
,

thus, we expect the fifth contribution to be smaller compared to the third one. ~j (3)(~r) is
given by:

~j (3)(~r) =
∑
ijk

~∇~rGR(~r, ~ri, ε)G
R(~ri, ~rj , ε)G

R(~rj , ~rk, ε)

×GR(~rk, ~r, ε)
[
Trσ ti(ε) tj(ε) tk(ε)

− Trσ tk(ε) tj(ε) ti(ε)
]

,

(3.135)

and ~j (5)(~r) reads:

~j (5)(~r) =
∑
ijkml

~∇~rGR(~r, ~ri, ε)G
R(~ri, ~rj , ε)G

R(~rj , ~rk, ε)

×GR(~rk, ~rm, ε)G
R(~rm, ~rl, ε)G

R(~rl, ~r, ε)

×
[
Trσ ti(ε) tj(ε) tk(ε) tm(ε) tl(ε)

− Trσ tl(ε) tm(ε) tk(ε) tj(ε) ti(ε)
]

.

(3.136)

The previous equations can be simplified further using the properties of the Pauli matrices.
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Figure 3.19: Induced orbital magnetization map for a timer of Fe adatoms in an equilateral trian-
gle geometry, deposited on Rashba electron gas, αso = −0.4 eV Å and m∗ = 0.26me are the
Rashba model parameters for the Au(111) surface state. The SOI is turned off, however, the orbital
magnetization is non-zero due to the non-collinearity.

The third order contribution to the current density simply reads:

~j (3)(~r) =
∑
ijk

~f3(~r) ~Mi · ( ~Mj × ~Mk) , (3.137)

where ~Mi is the spin moment of the impurity i and ~f3(~r) is given by:

~f3(~r) = − 2~
πm∗

Im ~∇~rGR(~r, ~ri, ε)G
R(~ri, ~rj , ε)

GR(~rj , ~rk, ε)G
R(~rk, ~r, ε) .

(3.138)

Similarly the fifth order can be simplified as well:

~j (5)(~r) =
∑
ijknl

~f5(~r) ( ~Mi · ~Mj)
[
~Mk · ( ~Mn × ~Ml)

]
, (3.139)

where ~f5(~r) is given by:

~f5(~r) =− 4~
πm∗

Im ~∇~rGR(~r, ~ri, ε)G
R(~ri, ~rj , ε)G

R(~rj , ~rk, ε)

×GR(~rk, ~rm, ε)G
R(~rm, ~rl, ε)G

R(~rl, ~r, ε) .
(3.140)

When restricting ourselves to the third order expansion, we find a non-zero ground state
charge current which is proportional to the scalar chirality~j(~r) ∝ ~M1 · ( ~M2× ~M3). When
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System Ml,z(µB) Ms,z(µB)

Single adatom ( ~Mi ‖ z) 0.58 2.11
Single adatom ( ~Mi ‖ x) 0.00 0.00

Dimer 0.08 0.04
Trimer (with SOI) 0.02 0.05

Trimer (without SOI) 0.00 0.64

Table 3.2: Summary of the net orbital and spin magnetizations obtained for the single adatom (with
the magnetic moment of the impurity ~Mi ‖ z-axis and x-axis, respectively), dimer and trimer (with
and without SOI).

this expression for the current density in inserted into Eq. (3.101), we show thatml,z(~r) ∝
~M1 · ( ~M2 × ~M3). This establishes the connection between the orbital magnetization and

the scalar chirality in absence of the SOI. Considering that ml,z(~r) in this scenario is
solely related to the chirality of the magnetic texture, it can be referred to as a chiral orbital
magnetization. The net induced chiral orbital magnetization in the simulation box vanishes
by symmetry, and the induced spin magnetization is Ms,z = 0.64µB. A summary of net
induced spin and orbital magnetizations obtained for all the systems considered previously
is given in Table 3.2.

In presence of the SOI, the Rashba term contribution and the one from the non-
collinearity will compete. For the present case, the former one is much larger. Typically,
the induced orbital magnetization ml,z(~r) originating from the SOI is the largest for ferro-
magnetic structures, and for the one coming from the non-collinearity, it is the largest for
non-coplanar structures that maximize the scalar chirality.

3.10 From Rashba surface states to topological insulators
The Rashba Hamiltonian given in Eq. (3.1) is not sufficient to describe the diverse phe-
nomena that emerge on surfaces in presence of the SOI. We now introduce a more general
form for the surface Hamiltonian, which can reproduce the Rashba spin splitting as well
as other band structures of interest. For example, the generalized surface Hamiltonian can
reproduce linear dispersions such as the ones observed on the surface of 3D topological
insulators. These materials are insulating in the bulk but host conducting surface states.
Recently, they raised a lot of interest due to possible applications in spintronics. They will
be discussed in detail in the next chapter.

In order to describe these various systems, one can use a phenomenological ~k·~pHamil-
tonian. For the systems of interest such as Au(111) and Bi2Se3(111), the surfaces are non-
magnetic and their crystal structure has C3v symmetry. Therefore, the Hamiltonian must
conserve time reversal symmetry and be invariant under C3v symmetry operations. Thus,
the ~k · ~p Hamiltonian expanded up to third order in k reads [167, 168]:

H~k~p =
~2k2

2m∗
12 − αso (1 + βk2) (kxσy − kyσx) +

λ

2
(k3

+ + k3
−)σz . (3.141)

The first term represents the parabolic dispersion of the free electron gas, which is degen-
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erate in spin as shown Fig. 3.20a. The second term represents the Rashba spin splitting. Its
linear contribution in k (i.e. when β = 0, β is the term that corrects the velocity) results
in a spin splitting of the two spin-degenerate parabolas as shown in Fig. 3.20b. When the
second term includes higher order contributions in k3 (i.e. when β 6= 0), it leads to a down-
ward bending of the outer Rashba band creating a Dirac-like dispersion (Dirac cone). This
downward bending has important consequences since it makes the surface state connect
the valence band to the conduction band while closing the band gap as shown in Fig. 3.20c.
The closing of the gap at the surface is a characteristic observed in topological materials,
such as Chern insulators or topological insulators [16]. The last term in Eq. (3.141) ac-
counts for warping effects that can be observed on constant energy contours in k-space. It
leads to a breaking of the rotational symmetry. λ is a parameter that controls the warping
strength. The warped band structure is shown Fig. 3.20d.

a) Free electrons b) Rashba effect  

c) Band inversion d) Warping

↵so

�

�

K � M K � M

Figure 3.20: Energy dispersion of the surface states obtained using the ~k · ~p Hamiltonian given in
Eq. (3.141). Different contributions are added to the Hamiltonian: (a) The spin-degenerate parabolic
dispersion. (b) The Rashba spin splitted surface states. (c) The Rashba outer band down-folded
due to a correction of the velocity. (d) Hexagonal warping of the constant energy contours breaking
rotational symmetry.
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The transition from Rashba to topological surface states can be understood by looking
at the band structure of semimetals such as Sb. The valence and conduction bands are
overlapping in energy as shown schematically in Fig. 3.21b, leading to a negative band
gap, which arises due to the SOI. A negative band gap is a signature of the topological
character of the Sb band structure. Similarly, to 3D topological insulators, Sb(111) hosts
metallic surface states. These states connect the valence band to the conduction band,
however, they are distorted compared to the linear dispersion (Dirac cone) observed in 3D
topological insulators as shown in Fig. 3.21b and Fig. 3.21c. Near the Γ point the surface
states of Sb(111) are reminiscent of Rashba splitted surface states observed on Au(111) as
shown in Fig. 3.21a. Nonetheless, for higher energies there is transition to a single Dirac
cone similar to the one observed in topological insulators. Therefore, Sb(111) represents a
conceptual connection between Rashba spin splitted and topological surface states, since
it displays both behaviors depending of the energy range considered.

K

a) Au: Rashba  

� M

b) Sb: Rashba       Dirac

K � M

c) Bi2Se3: Dirac

K � M

Figure 3.21: Schematic band structures connecting the Rashba spin splitted surfaces states to topo-
logical surfaces states: (a) Au(111) (usual Rashba spin splitting). (b) Sb(111) and (c) Bi2Se3(111)
(Dirac-like dispersions). Sb(111) presents a Rashba-like spin splitted surface state near the band
crossing (Dirac point), while it has a single Dirac cone for higher energies similarly to Bi2Se3(111).

3.11 Summary and outlook
In this chapter, we used a Rashba Hamiltonian to describe the spin splitting of the sur-
face states due to the SOI in an inversion asymmetric environment. Then, we employed
an embedding technique to include non-magnetic and magnetic impurities, which were
described by a transition matrix in the s-wave approximation. First, we used a mapping
procedure to an extended Heisenberg model, and computed the magnetic interactions an-
alytically in the RKKY approximation. We demonstrated the deep link between the mag-
netic interactions and the components of the magnetic Friedel oscillations generated by
single adatoms. We went beyond the RKKY approximation by considering energy depen-
dent scattering matrices and multiple scattering effects to demonstrate that the size and
shape of the nanostructures have a strong impact on the magnitude and sign of the mag-
netic interactions. We proposed an interesting connection between the DM interaction and
the isotropic magnetic exchange interaction, J(r). The DM interaction can be related to
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the first-order change in J(r) with respect to the SOI and, even more importantly, the
origin of the sign of the DM interaction, i.e. defining the chirality, can be interpreted by
the increase or decrease in J(r) upon application of the SOI. We considered nano-objects
that can be built experimentally, and show that each of the objects behave differently and
the stability of their non-collinear chiral spin texture is closely connected with the type of
structure built on the substrate.

Second, using linear response theory, we have derived a formulation of the tensor de-
scribing the residual electrical resistivity for the particular case of a Rashba electron gas
scattering at an impurity that can be magnetic and whose magnetic moment can point in
any arbitrary direction. We performed different types of studies and investigated the non-
trivial impact of the strength of SOI of the substrate, as well as the role of the magnetism
of the impurity and of the orientation of the magnetic moment on the diagonal and off-
diagonal elements of the resistivity tensor. For instance, we found that, after scattering, a
planar Hall effect and an anisotropic magnetoresistance can occur even without incorporat-
ing the SOI at the impurity site, if the orientation of the magnetic moment is not perpendic-
ular to the surface. We derived analytically and generalized the usual phenomenological
functional forms of the angular dependence of the resistivity tensor elements to the cases
where the magnetization points in arbitrary directions.

Third, we investigated ground state charge currents, which are induced when magnetic
impurities are deposited on a Rashba electron gas. We derived an analytical expression
for the current operator and found that, adding to the paramagnetic term, a diamagnetic
contribution from the spin-orbit gauge field appears. Furthermore, we computed analyti-
cally the current density in presence of a single magnetic impurity, which was employed
to calculate the induced orbital magnetization. It was computed numerically by solving a
Poisson equation in a simulation box. The induced orbital magnetization was found to be
one order of magnitude smaller compared to the induced spin magnetization. More com-
plicated nanostructures were also considered such as dimers and trimers. For the trimer
structure, when the spin moments are non-coplanar, there is a non-vanishing induced or-
bital magnetization in absence of the SOI, which is related to the scalar chirality.

We have seen that the interplay between the SOI and magnetism is a source of numer-
ous phenomena. The resistivity tensor was calculated for a single magnetic impurity, the
behavior of the resistivity tensor in presence of nanoclusters with topological spin textures
such as magnetic Skyrmions remains unexplored. Moreover, adding to induced ground
state charge currents in the Rashba electron gas, ground state spin currents occur, which
can be used to interpret the previously discussed magnetic interactions.
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Chapter 4
Magnetic impurities in topological
insulators

Topological insulators represent a new phase of matter which can exist in two (2D) or three
dimensions (3D). They are found in semiconductors and thermoelectric materials [16].
This phase originates due to the spin-orbit interaction present in these materials. The main
characteristic of topological insulators is that they are insulating in the bulk and conducting
at the edges. These edge states are protected by time reversal symmetry and their spin-
momentum locking (topological protection) [16]. For 2D topological insulators, the topo-
logical protection results in a dissipationless transport even in presence of non-magnetic
disorder. Indeed, edge states with quantized conductance were observed experimentally
in HgTe quantum wells [12]. For 3D topological insulators backscattering can be allowed
depending on the shape of the Fermi surface (this is possible if the Fermi surface has a
warping [167]).

The breaking of time reversal symmetry in topological insulators can lead to an open-
ing of a band gap at the Dirac point (crossing of the edges state in the band gap see
Fig. 4.1c). This can be a source of numerous exotic effects such as the quantum anomalous
Hall effect (QAHE) and dissipationless transport. These effects could be used to build low
power consumption devices relying only on the electron spin [169, 170, 171]. Here we
investigate the possibility of opening a gap using magnetic impurities and analyze their
ground state properties as well as their magnetic excitation spectra.

The chapter is structured as follows: First, we provide a short introduction to topolog-
ical insulators. Second, we consider Bi2Te3 and Bi2Se3 as prototypes of 3D topological
insulators and discuss their band structure in bulk and thin films. Then, we investigate the
ground state properties of 3d and 4d transition metal impurities embedded in those mate-
rials. Magnetic impurities are expected to open a band gap when their magnetic moment
points out-of-plane [81, 16]. This gap opening is the key ingredient for the observation of
the QAHE. For that reason, a precise description of the MAE is required. Therefore, we
systematically investigate the MAE for all the considered impurities using three different
computational methods. We also explore the possibility of measuring the MAE and its sign
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via inelastic scanning tunneling spectroscopy (ISTS). Theoretically, we access the mag-
netic excitation spectra within the framework of TD-DFT. Furthermore, the manipulation
of the spin states will be addressed by extracting the characteristic lifetimes. Finally, we
use the magnetic response function to determine the amount of zero-point spin-fluctuations
and their impact on the orientation of the magnetic moment (i.e. magnetic anisotropy).

The part of this chapter discussing the impurity-induced in-gap states in Bi2Te3 and
Bi2Se3 was published in Ref. [172]. The section dedicated to the investigation of spin
dynamics in topological insulators was also published after the thesis has been submitted
in Ref. [173].

4.1 Introduction to topological insulators
Before discussing topological insulators, we first introduce the so-called quantum Hall ef-
fect (QHE) which displays chiral edges states. QHE represents the first example where the
topology of the band structure was related to physical quantities such as the Hall conduc-
tivity. It is a quantized version of the classical Hall effect. It was observed in 2D electronic
systems at low temperatures, and under strong magnetic fields applied perpendicularly
to the plane containing the electrons [174]. Classically, the electrons can be viewed as
charges moving in circles around the magnetic field. At the edges of the sample, the circles
can not be completed giving rise to chiral edge states as shown in Fig. 4.1a. An analogous
situation takes place in the quantum Hall effect leading to topologically protected edges
states.

A similar scenario is observed in 2D topological insulators in absence of magnetic
fields (i.e. without breaking time reversal symmetry). This mechanism is induced by the
spin-orbit interaction (SOI). Indeed, the SOI discussed in Sec. 2.4.5 can be viewed as an
effective magnetic field coupling to the electron spin:

HSOI = ~Beff(~k) · ~σ . (4.1)

~Beff(~k) is the effective field, it is an odd function of the momentum of the electron ~k, thus,
electrons moving in opposite directions along the edges have opposite spin polarizations.
This is known as the quantum spin Hall effect (QSHE) [14, 175] an illustration is shown in
Fig. 4.1b. This figure displays the spin and momentum locking which is a characteristic of
topological insulators (also known as helicity). These helical edge states form a Kramers
pair. In presence of nonmagnetic disorder, they are protected from backscattering by time
reversal symmetry. The helical edge states connect the conduction band to the valence
band, they have a linear dispersion and cross in the surface band gap as shown in Fig. 4.1c.

Similarly to the 2D case, 3D topological insulators are insulating bulk material with
metallic edges states located at the surface. The first 3D topological insulator discovered
experimentally was an alloyed semiconductor Bi1−xSbx in Ref. [13]. They used angle
resolved photoemission spectroscopy (ARPES) and observed surface states lying in the
bulk band gap. Afterwards a multitude of 3D topological insulators was found, such as the
ones studied in this thesis namely: Bi2Se3 and Bi2Te3. Indeed, it was shown in Ref. [176]
that Bi2Se3 and Bi2Te3 are topological insulators, at the surface they host a single Dirac
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Figure 4.1: Illustration of the edges states hosted in a) Quantum Hall effect: a single edge state is
observed with the spin polarization parallel to the external applied magnetic field. The circles with a
dot in the center indicate a spin polarization parallel to the z-axis. b) Quantum spin Hall effect (2D
topological insulator): two edges propagating in opposite directions with opposite spin polarization,
which is due to the spin momentum locking generated by the SOI. The red circles with a cross on
top designate a spin polarization antiparallel to the z-axis. c) Linear dispersion of the chiral edge
states present in a 2D topological insulator. The edge states have a crossing in the band gap.
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cone along the ΓM and KΓ directions of the two dimensional Brillouin zone (M and K
are the time-reversal invariant momenta points). Bi2Se3 and Bi2Te3 surfaces were also
investigated experimentally [13, 177, 178]. The linear dispersion of the surface state of a
topological insulator (Dirac cone) and the spin momentum locking can be described by a
massless Dirac Hamiltonian [16]:

HD = ~ vF

(
~σ × ~k

)
z

, (4.2)

where vF is the Fermi velocity. The previous Hamiltonian includes two main character-
istics of topological insulators: The first one is the spin momentum locking. The second
characteristic concerns the so-called Berry phase [15], which is a phase factor that emerges
when a quantum state evolves adiabatically in addition to the usual dynamical phase. One
cannot get rid of it by choosing a different phase factor for the Hamiltonian eigenstates.
The Berry phase γ is defined as:

γ = −i

∮
d~k 〈ψ~k| ~∇~k |ψ~k〉 ,

=

∮
d~k ~A~k .

(4.3)

The integral is performed along a contour around ~k = 0 in momentum space. |ψ~k〉 rep-
resent the eigenstates of a Bloch Hamiltonian H(~k). ~A~k = −i 〈ψ~k| ~∇~k |ψ~k〉 is the Berry
connection. For topological insulators the Berry phase γ = π. This was shown exper-
imentally by mapping the spin texture of the Fermi surface, which was obtained using
ARPES [16].

Topological insulators and trivial insulators are two topologically distinct entities.
Topology in mathematics is used to distinguish between shapes, for example, a donut and
a coffee mug are topologically equivalent, since they can be deformed into each other by a
continuous transformation. However, there is no continuous transformation that allows to
transform an orange into a donut. The number of holes in the previous example represents
a topological invariant. In condensed matter physics, two Bloch Hamiltonians H(~k) and
H ′(~k) with a gapped energy spectrum are considered topologically equivalent if they can
be transformed into each other without closing the gap. In Fig. 4.2, we show a schematic
bulk band structure for a trivial and a topological insulator. For the trivial one, we observe
a valence band and conduction separated with a band gap. For the topological insulator, a
similar setup is observed but a band inversion occurs and the bands display a camel back
shape. It can be understood as follows: first the SOI closes the gap, then the hybridiza-
tion between the conduction and valence bands leads to an opening of the gap once again.
The closing of the gap due to the SOI is a signature of the topological non-equivalence
between a trivial and a topological insulator. The red and black colors indicate the parity
of the wave function associated with each energy band.

The topological invariant is used to distinguish between trivial and topological insula-
tors. The concept of topological invariant was first introduced in the prominent work of
Haldane [179] in the context of Chern insulators which are nontrivial insulator with bro-
ken time reversal symmetry. They display a QHE without applying an external magnetic
field. The connection between the quantum Hall conductivity and the topological invariant
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Figure 4.2: Illustration of the transition from a trivial insulator (a) to a topological insulator (b)
induced by the spin-orbit interaction (SOI). For topological insulators the valence band displays a
Camel back resulting from the band inversion. The colors indicate the parity of the wave functions
associated with each band. An inversion of the parity is observed at the center of the bands for the
topological insulator (b).
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was provided by Thouless-Kohmoto-Nightingale-den Nijs (TKNN) [180] for the anoma-
lous QHE (i.e. Chern insulator). The quantum Hall conductivity can be computed starting
from the Kubo formula similarly to the resistivity discussed in the previous chapter, it can
be expressed in terms of the TKNN topological invariant n as:

σxy =
e2

~
n . (4.4)

σxy is quantized, n is an integer quantity which provides a connection between the quan-
tum Hall conductivity and the topology of the electronic band structure and reads:

n =
1

2π

∫
S~k

dkxdky

(
~∇~k × ~A~k

)
z

,

=
1

2π

∫
S~k

dkxdky

(
~Ω~k

)
z

.

(4.5)

S~k is the area of the 2D Brillouin zone and ~Ω~k is the Berry curvature. n is often called
the Chern number. When the 2D Brillouin is mapped to the surface of a torus, the Chern
number can be viewed as the winding number of the phase of the wave function ψ~k. The
Chern number is a topological invariant since its is not affected by smooth changes of the
Hamiltonian. For 2D topological insulators the Hall conductivity vanishes due to time
reversal symmetry and n = 0. However, on can define the so-called Z2 topological invari-
ant. For 2D systems conserving Sz (spin projection along the z-axis), the Chern numbers
can be defined for each spin channel n↑ and n↓. The spin Hall conductivity is then given
by the difference between the Chern numbers for each spin channel [181]:

nσ =
n↑ − n↓

2
. (4.6)

The Z2 topological invariant is defined as :

n = nσ mod 2 . (4.7)

The Chern number can be used to predict the appearance of edge states by looking
at the bulk band structure. Consider a Chern insulator (n = 1) interfaced with a trivial
insulator, for example vacuum (n = 0). At the interface the gap must close to allow
the Chern number to change, since these two insulators are topologically distinct. The
gap is closed by edge states (interface states). The difference between the number of
edge states moving in opposite directions (right and left) is given by the bulk-boundary
correspondence [182]:

∆n = Nr −Nl . (4.8)

∆n is the difference between the Chern numbers of each side of the interface. Nr (Nl) is
the number of edge states propagating in the right (left) direction. A similar argument can
be used to predict the presence of edge states when interfacing a topological insulator with
a trivial insulator.
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System a (Å) c (Å) µ ν
Bi2Te3 4.383 30.487 0.400 0.212
Bi2Se3 4.138 28.64 0.399 0.206

Table 4.1: Crystal structure parameters for Bi2Te3 and Bi2Se3 [183]. a and c represent the lattice
constants, µ and ν are the position of the Bi atoms and the two equivalent Te atom defined in units
of primitive translation vectors given in Eq. (4.9).

4.2 Bi2Te3 and Bi2Se3 as prototypical topological insula-
tors

Bi2Te3 and Bi2Se3 belong to the same family of compounds. They have a rhombohedral
crystal structure with the space group D5

3d (R3̄m). As an example, we show the crystal
structure of Bi2Te3 in Fig. 4.3. The unit cell contains five atoms. The structure consists
of a collection of quintuple layers stacked along the z-direction. Each quintuple layer
contains two equivalent Bi and Te atoms, while it has one inequivalent Te in the center
(see Fig. 4.3). There is a strong interlayer bonding among two atomic layers in the same
quintuple layer. However, the coupling is weaker between different quintuple layers since
it is mainly due to van der Waals interactions. The rhombohedral primitive vectors are
given by: 

~v1 = (−a2 ,−
√

3a
6 , c3 )

~v2 = (a2 ,−
√

3a
6 , c3 )

~v3 = (0,
√

3a
3 , c3 )

(4.9)

a and c are the lattice constants, the position of the atoms within the unit cell are given
in units of the primitive vectors by: (±µ,±µ,±µ) for the Bi atoms and (±ν,±ν,±ν) for
the two equivalent Te atoms, while the central Te is at (0, 0, 0). Table 4.1 summarizes the
parameters for the considered structures [183].

The reciprocal lattice vectors are calculated using the real space primitive vectors given
in Eq. (4.9). The first Brillouin zone for the three dimensional crystal structure and its cor-
responding two dimensional surface Brillouin zone are depicted in Fig. 4.3d and Fig. 4.3e,
respectively. The different time reversal invariant momentum points (TRIM) are high-
lighted on the two Brillouin zones. These are points where the Kramers degeneracy occurs
(i.e ε~k↑ = ε~k↓) due to the periodicity of the Brillouin zone [184].

Using the KKR Green function method introduced in Sec. 2.4, we computed the band
structure of Bi2Se3 for the bulk crystal structure. We self-consistently converged the sys-
tem which contains 5 atoms per unit cell using a 30× 30× 30 k-mesh, then we computed
the spectral function [185], using 400 energy points and 200 k-points along each high sym-
metry direction. The resulting band structure showing the bands connecting the Γ point to
the TRIM points at the edges of the Brillouin zone is given in Fig. 4.4c. The Fermi energy
(εF) is located in the bulk band gap which is around 0.4 eV. At the Γ point, a camel back
shape is observed, it is highlighted with a red circle in Fig. 4.4c. This is caused by the
SOI. In order to verify that a band inversion occurs for Bi2Se3 (i.e. Bi2Se3 is a topologi-
cal insulator), Zhang et al. [176] followed the approach suggested by Fu and Kane [186].
They analyzed the parity of the Bloch wave functions for the valence band at the Γ point.
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Figure 4.3: a) Crystal structure of Bi2Te3 characterized by a primitive unit cell containing five
inequivalent atoms (two Bi, two Te2 and one Te1). The rhombohedral primitive vectors{~v1, ~v2, ~v3}
are also shown. For the thin film six quintuple layers are used. The cut to create the surface is
indicated on the figure. The position of the impurity in the real space calculations is indicated by a
red arrow. b) Top view of the crystal structure showing the ABC stacking of the different layers. c)
Side view of quintuple layer showing the stacking of the layers along the z-direction. d) 3D Brillouin
zone for the bulk crystal structure (rhombohedral). e) 2D projection of the 3D Brillouin zone on the
(111) surface, the TRIM points are highlighted in red.
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They noticed a change in the parity in presence of the SOI. A detailed analysis explaining
the band inversion in terms of the atomic orbitals of Bi (6s26p3) and Se (4s24p4) atomic
levels was also discussed. Very similar features are observed in Fig. 4.4a for the bulk band
structure of Bi2Te3. The most interesting characteristic of topological insulators is the
existence of a topological surface state. The presence of this surface state is justified by
the bulk boundary correspondence principle discussed in Sec. 4.1. In order to observe it,
we consider a thin film of Bi2Se3 (Bi2Te3) grown along the (111) direction. The thin film
contains six quintuple layers. This is enough to ensure the absence of a direct coupling
between the two surfaces of the thin film, since the surface state penetrates only within two
quintuple layers [183]. The band structure is shown in Fig. 4.4d. We observe a topological
surface state lying within the bulk band gap. It consists of a single Dirac cone with a cross-
ing (Dirac point) located at the Γ point (The red discontinuous lines indicate the upper part
of the Dirac cone). A detailed analysis shows that the surface state wave functions near the
Γ point have mainly a p-orbital character and a small s-orbital contribution as discussed
in Ref. [187]. These surface states are absent for trivial insulators. We also computed the
surface band structure for Bi2Te3 shown in Fig. 4.4b, similarly to the Bi2Se3 surface state,
the dispersion is linear along Γ → K, while it has a more complicated structure along M
→ Γ. The asymmetric dispersion in Bi2Te3 is attributed to the hexagonal warping of the
Fermi surface [167].

4.3 Ground state properties of 3d and 4d magnetic impu-
rities embedded in Bi2Te3 and Bi2Se3

Here we consider the breaking of time reversal symmetry in topological insulators via
magnetic impurity doping. The magnetic interactions among the impurities may lead
to ferromagnetic order. If the magnetocrystalline anisotropy favors an out-of-plane ori-
entation (perpendicular to the surface) this is expected to induce the gap opening [81,
16]. Several experimental investigations using angle-resolved photoemission spectroscopy
(ARPES) and scanning tunneling spectroscopy (STS) measurements confirmed the exis-
tence of a band gap [22, 23, 24]. However, the gap opening in topological insulators is
subject to controversy, since other experimental works [25, 26, 27, 28, 29] report the ab-
sence of a gap. In Ref. [188], A. M. Black-Schaffer et al. used a continuous model and a
tight-binding model of a three dimensional topological insulator introducing the topologi-
cal surface and explained that a gap opens due to magnetic scattering. Also, the presence
of charge scattering produces impurity resonances which lead to a filling of the band gap.

In order to settle this controversy, we performed first principles calculations for mag-
netic impurities embedded in Bi2Te3 and Bi2Se3 hosts. From our calculations, we confirm
the absence of a gap opening due to the presence of the impurity resonances. Also we
address the impact of the spin-fluctuations on the magnetic anisotropy energy, which is an
essential ingredient for the gap opening as mentioned earlier. A detailed discussion for 3d
and 4d impurities embedded in both hosts is given in the next sections.
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c) d)

Figure 4.4: a) Band structure for Bi2Te3 bulk connecting the Γ point to the F and L points at the
edges of the three dimensional Brillouin zone (TRIM points), the red circle highlights the band
inversion that occurs in bulk due to the SOI. b) Band structure for a Bi2Te3 thin film constituted of 6
quintuple layers oriented in the (111) direction, it connects the Γ point to the M and K points at the
edges of the two dimensional Brillouin zone (TRIM points). The discontinuous red lines indicate
the upper part of the Dirac cone. c) Same as in (a) but for Bi2Se3. d) Same as in (b) but for Bi2Se3.
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Element Q M s(µB) M l(µB)
Cr (Bi2Te3) 5.154 3.843 0.065
Cr (Bi2Se3) 4.841 3.671 0.008
Mn (Bi2Te3) 6.160 4.412 0.050
Mn (Bi2Se3) 5.863 4.421 0.024
Fe (Bi2Te3) 7.282 3.395 0.260
Fe (Bi2Se3) 6.963 3.482 0.144
Co (Bi2Te3) 8.448 2.108 0.883
Co (Bi2Se3) 8.136 2.231 0.942

Table 4.2: Ground state properties of 3d impurities embedded in Bi2Te3 and in Bi2Se3 including
the valence charge on the impurity Q, the spin moment Ms and the orbital moment Ml.

4.3.1 3d magnetic impurities embedded in Bi2Te3 surface

In the following, we use the KKR Green function method in real space (see Sec. 2.4). We
investigate the ground state properties of single 3d transition metals atoms (Cr, Mn, Fe
and Co) embedded in the bulk or at the surface, the latter is simulated with six quintuple
layers of Bi2Te3 oriented in the (111) direction. The band structure of the system is shown
in Fig. 4.4. We started from a pristine Bi2Te3 host, then assuming that the perturbation
due to the impurity is local, we compute the Green function in a finite region around the
defect. Afterwards, the impurity is embedded by solving the Dyson equation for the host
Green function and the impurity potential as done in Eq. (2.23). Several cluster sizes were
considered. We report on the results obtained using a cluster containing 24 Bi atoms and
31 Te atoms, it also contains 47 empty spheres. Thus, the cluster contains 102 sites in
total.

The 3d impurities are substituting an atom from the Bi subsurface layer as indicated in
Fig. 4.3a (indicated by a red arrow). This position is stable thermodynamically as observed
experimentally and predicted from first principles for the case of Fe in Bi2Te3 [189, 190].
The ground state of the impurities is self-consistently determined, with the impurity mag-
netic moment perpendicular to the surface plane (i.e. along the z-axis). The obtained
valence charge, spin and orbital moments shown in Table 4.2.

The first column in Table 4.2 represents the charge on the impurity site, one can notice
that all considered 3d impurities are donors of electrons (n-type doping). Similar results
were obtained for Fe in Bi2Te3 in Ref. [189]. The spin moment Ms is shown in the second
column of Table 4.2, it is high for Cr and Mn since they have half filled d-shells, while it
decreases for Fe and Co in agreement with Hund’s rules. In contrast, the orbital moments
are higher for Fe and Co compared to Cr and Mn due to the partial filling of the minority
d-orbitals. Cr and Mn have particularly small values for the orbital moments, which may
lead to small magnetic anisotropies, which will be discussed in detail in Sec. 4.6.

The local density of states (LDOS) for Cr, Mn, Fe and Co is depicted in Fig. 4.5a. The
majority spin channel (↑) is represented in full lines, while the minority spin channel (↓)
is given in dashed lines. On the one hand, the majority-spin channel is fully occupied for
all considered elements with the exception of Cr. On the other hand, the minority-spin
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channel is partially occupied for Fe and Co and unoccupied for Cr and Mn. This explains
why the spin moment diminishes for Fe and Co.

The resonances observed below εF in the majority-spin channel, and in the minority-
spin channel of Fe and Co are the so-called virtual bound states. They originate from the
hybridization of the atomic d-orbitals of the impurity with the sp-states of the Bi2Te3 host,
resulting in a fractional valence charge on the impurity (see Table 4.2). Around εF, states
living in the bulk band gap of the host system are observed, we call them “in-gap states”.
A detailed discussion of these in-gap states is done in Sec. 4.4.
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Figure 4.5: a) Spin resolved LDOS for 3d impurities (Cr, Mn, Fe and Co) embedded in Bi2Te3
(111) surface at a Bi site from the subsurface layer. The majority-spin channel is represented in full
lines, while the minority-spin channel is given in dashed lines. The energies are given with respect to
εF. The LDOS displays a fully occupied majority-spin channel (except Cr) and a partially occupied
minority-spin channel as a function of the filling. The LDOS of the host scaled by a factor five is
shown in the background with a light blue. b) Same as in a) but for a Bi2Se3 surface.
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Element Q Ms(µB) Ml(µB)
Nb (Bi2Te3) 3.488 1.097 -0.143
Nb (Bi2Se3) 3.077 0.906 -0.048
Mo (Bi2Te3) 4.717 2.678 -0.004
Mo (Bi2Se3) 4.316 2.574 -0.093
Tc (Bi2Te3) 5.892 2.493 0.202
Tc (Bi2Se3) 5.474 2.534 0.079
Ru (Bi2Se3) 6.734 0.564 0.378
Pd (Bi2Se3) 9.041 0.578 0.135

Table 4.3: Ground state properties of 4d impurities embedded in Bi2Te3 and in Bi2Se3 including
the valence charge on the impurity Q, the spin moment Ms and the orbital moment Ml (the negative
sign on the orbital moment means that it is antiparallel to Ms).

4.3.2 4d magnetic impurities embedded in Bi2Te3 surface

After studying the ground states properties of 3d impurities embedded in the Bi2Te3 in
the previous section, we consider the same setup and dope the system with single 4d
transition metal impurities instead. The 4d-orbitals are spatially more extended than the
3d ones, therefore, 4d impurities have a higher hybridization with the host atoms. Thus,
the 4d impurities may display very different behaviors depending on the host they are
embedded into. We show in Table 4.3 the ground state properties for Nb, Mo and Tc. The
4d impurities are all donors. We notice that the number of electrons in Nb changes from 5
to 3.5 due to the strong hybridization with Bi2Te3 host, as aforementioned. Also, for Nb
the d-shell is less than half filled leading to a spin moment (Ms) antiparallel to the orbital
moment (Ml). For Mo and Tc which have a half filled d-shell, they display the highest
values for Ms in qualitative agreement with Hund’s rules [42].

We show the LDOS for Nb, Mo and Tc in Fig. 4.6a, which displays a sharp 4d reso-
nance at εF in the majority-spin channel for Nb (full lines), while its minority-spin channel
(dashed lines) is flat up to εF. The 4d resonance in the majority-spin channel shifts down-
wards for Mo and Tc since the number of electrons increases. We also notice for Mo
and Tc that the majority-spin and minority-spin channels are both partially occupied, in
contrast to what is observed in 3d impurities where the majority-spin channel is always
fully occupied. This can be explained by the presence of a stronger exchange splitting in
the 3d impurities, i.e. the 3d elements have larger Stoner parameter compared to the 4d
ones [191].

In addition, we also investigated Rh, Ru and Pd impurities. However, they were found
to be nonmagnetic. The analysis of the paramagnetic LDOS shown in Fig. 4.7 reveals that,
while moving in the periodic table from Tc towards Pd (adding electrons), the 4d resonance
is shifted to lower energies leading to a drastic decrease of the LDOS at εF. Thus, the
Stoner criterion is not fulfilled making Rh, Ru and Pd impurities in Bi2Te3 nonmagnetic.
Interestingly, the in-gap states are present for both magnetic and nonmagnetic impurities.
They are very pronounced for some elements namely Tc, Rh and Pd (The in gap states are
located above εF for Tc, while in the case of Rh and Pd they are close to εF).



Ground state properties of 3d and 4d magnetic impurities embedded in Bi2Te3 and
Bi2Se3 121

�4 �3 �2 �1 0 1
"� "F (eV)

�6

�4

�2

0

2

4

6
L
D

O
S

(S
ta

te
s/

eV
)

Host LDOS

Nb

Mo

Tc

a) Bi2Te3

�4 �3 �2 �1 0 1
"� "F (eV)

�6

�4

�2

0

2

4

6

L
D

O
S

(S
ta

te
s/

eV
)

Host LDOS

Nb

Mo

Tc

Ru

Pd

b) Bi2Se3

Figure 4.6: a) Spin resolved LDOS for 4d impurities (Nb, Mo, Tc) embedded in Bi2Te3 (111)
surface at a Bi site from the subsurface layer. The majority channel is represented in full lines, while
the minority is given in dashed lines. The energies are given with respect to εF. The LDOS displays
a partially occupied majority and minority channels due to a weaker exchange splitting compared to
the 3d impurities. The LDOS of the host scaled by a factor five is shown in the background with
a light blue. b) Same as in a) but for a Bi2Se3 surface where Ru and Pd are magnetic. Their spin
splitting is relatively small explaining the small values for their magnetic moments.
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Figure 4.7: Paramagnetic LDOS for nonmagnetic 4d impurities (Ru, Rh, Pd) embedded in Bi2Te3
(111) surface at a Bi site from the subsurface layer. The LDOS at εF is not high enough to satisfy
the Stoner criterion making these elements nonmagnetic. The LDOS of the host scaled by a factor
five is shown in the background with a light blue.

4.3.3 3d and 4d magnetic impurities embedded in Bi2Se3 surface
In order to study the impact of the substrate on the ground state properties of 3d and
4d single magnetic impurities in topological insulators, we consider a similar setup as in
Sec. 4.3.1 but trade Bi2Te3 for a Bi2Se3 host. Thus, the Te atoms (5s25p4) are replaced
by Se atoms (4s24p4), note that the lattice parameters are also different. The ground
properties for Cr, Mn, Fe and Co in Bi2Se3 are shown in Table 4.2. Similarly to the Bi2Te3

host, we find that all 3d impurities are electron donors. Overall 3d impurities donate more
electrons and the Ms are slightly changed compared to the Bi2Te3 host. However, the
orbital moments are more affected, for example Ml for Fe decreased by half compared to
the Bi2Te3 case. This is because Ml is more sensitive to the details of the hybridization.
We also computed the LDOS for these impurities, it is shown in Fig. 4.5b. It displays very
similar features compared to the LDOS for 3d impurities in Bi2Te3. We notice that the
occupied 3d virtual bound state for the majority-spin channel of Cr is less intense than in
Bi2Te3, which explains the reduction of its charge compared to the Bi2Te3 case.

We now move on to the 4d impurities in Bi2Se3. The ground state properties are
summarized in Table 4.3. Interestingly, Ru and Pd acquire a magnetic moment. This can
be explained as follows: Ru and Pd hybridize differently in the Bi2Se3 and Bi2Te3 hosts.
In the former case, the paramagnetic LDOS at εF is higher compared to the Bi2Te3 case.
Thus, the Stoner criterion is satisfied, making Ru and Pd magnetic. Pd is a peculiar case,
since it becomes magnetic due to the in-gap state, which provides a high density of states
at εF. In the Bi2Te3 case, the in-gap state was located slightly higher than εF as shown in
Fig. 4.7, which was not enough to drive Pd to a magnetic state. The magnetic moments



Investigating the in-gap states 123

of Ru and Pd are rather small, since the exchange splitting is weak as seen from Fig. 4.6b.
As stated earlier, changing the host affects a lot more the ground states properties of 4d
impurities in contrast to the 3d ones, since the 4d orbitals hybridize more with the host
electrons.

4.4 Investigating the in-gap states
Previously, we have shown the LDOS for 3d and 4d impurities embedded in Bi2Te3 and
Bi2Se3. Some of the impurities displayed sharp resonances lying within the bulk band
gap. They represent in-gap states, these resonances have a spin character and arise due to
the hybridization between the impurity and the host states. For the 3d elements the in-gap
states can be clearly observed in the majority-spin channel since they are located away
from the d virtual bound states, while in the minority-spin channel they mix up with the d
states as shown in Fig. 4.5a and Fig. 4.5b. For the 4d elements, they can be observed for
magnetic and nonmagnetic impurities and their presence depends on the chemical nature
of the impurity as shown in Fig. 4.6a and Fig. 4.6b.

Interestingly, similar resonances were observed experimentally in Ref. [192] using
scanning tunneling spectroscopy (STS) for Co, Ag and Cu impurities deposited on regular
metals: for example Ag(111) and Cu(111) surfaces. The in-gap states were located at the
bottom of the surface state with a broadening caused by the hybridization with the bulk
bands. In-gap states were observed from first principles calculations as well. Indeed in
Ref. [193], Lounis et al. considered 3d and Cu adatoms deposited on a Cu (111) and
observed resonances at the bottom of the surface state band in the LDOS. The presence
of these peaks is explained by the nature of the impurity potential, and its strength, which
can attract or repel electronic states. For metallic systems such as Cu(111) and Ag(111)
the resonances were found at the bottom of the surface state band.

In the case of topological insulators, phenomenological models [30, 188] relate the
creation of these in-gap states to the presence of topological surface states, our ab-initio
simulations demonstrate their existence even in the bulk geometry, ruling out the necessity
of the surface states for their creation. We find that these in-gap states can be induced by
hybridization with the bulk bands at the bulk band edges or by hybridization with the topo-
logical surface state. In order to understand and disentangle the different contributions to
the hybridization, we performed calculations for the 3d and 4d impurities for Bi2Te3 and
Bi2Se3 bulk in addition to the previously discussed surface calculations. Naturally, the
impurities are substituting a Bi atom similarly to the surface case. The change in ground
state properties namely the charge, spin moments of the impurities is rather small, this
can be understood from the fact that the immediate environment of the impurity (nearest
neighbors) remains unchanged from surface to bulk. In other words, the topological sur-
face state has a small impact on such properties. A comparison between the ground state
properties of 3d impurities embedded in Bi2Te3 thin film and bulk is shown in Table 4.4.

In Fig. 4.8, we show the LDOS of a magnetic Cr impurity in Bi2Te3. This element
has been chosen because it presents a very pronounced in-gap state. First, we notice a
decrease of ∼ 0.1 eV of the bandwidth for the bulk LDOS. This is due to the absence of
the hybridization with the surface state. The center of mass of the occupied states seems
to move to a lower energy in the bulk case. The in-gap state is still present in the bulk
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Element Q Ms(µB) Ml(µB)
Crs 5.154 3.843 0.065
Crb 5.266 3.823 0.057
Mns 6.160 4.412 0.050
Mnb 6.277 4.335 0.061
Fes 7.282 3.395 0.260
Feb 7.405 3.294 0.248
Cos 8.448 2.108 0.883
Cob 8.571 1.977 0.675

Table 4.4: Ground state properties of 3d impurities embedded in Bi2Te3 thin film (subscript s) and
in Bi2Te3 bulk (subscript b), Q is the valence charge on the impurity, Ms is the spin moment andMl

is the orbital moment.

geometry, which means that it is originating from the hybridization with the bulk bands.
A detailed analysis of the lm-resolved LDOS shows that the in-gap state is observed in
the {dxy, dx2−y2 , dxz, dyz} components of the d orbitals, but not in the dz2 one. Further-
more, the magnetic moment of the impurity is along the z-direction and the C3v symmetry
is conserved, which leads to a degeneracy between the {dxy, dx2−y2} components. The
{dxz, dyz} components are also degenerate. In the next section, we will discuss the emer-
gence of the in-gap states by means of a simple impurity Anderson model including a bulk
gapped band and a topological surface state.

4.5 Anderson model for the in-gap states

In order to explain the origin of the in-gap states observed in the LDOS of a Cr impurity
embedded in Bi2Te3 (see Fig. 4.8), we use a simple Anderson impurity model. As stated
earlier, the in-gap states arise from the hybridization between the d-states of the impurity
and the sp-states of the host. Our goal is to understand if and how the hybridization with
both bulk and surface states leads to the in-gap states. We consider a minimal model
to interpret our first principles calculations, which takes into account an impurity with a
single d-orbital (as an example we chose the dxy component). It has two energy levels ε↑i
and ε↓i for the majority and minority spin channels, respectively. This impurity hybridizes
with a two dimensional topological insulator surface state, which is characterized by a
linear Dirac Hamiltonian, as discussed in Sec. 4.1:

HD = ~ vF

(
~σ × ~k

)
z

. (4.10)

HD has the following eigenvalues ε±~k = ±~vF k. To account for the bulk bands, we

included bulk Bloch states also characterized by the wave vector ~k with the eigenenergies
εσ~k for each spin channel. The bulk and surface states interact only via the impurity. Thus,
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Figure 4.8: Comparison between the spin resolved LDOS of a Cr impurity embedded in Bi2Te3
(111) surface (Bi site subsurface layer) and Bi2Te3 bulk (Bi site). The majority band is represented
in full lines, while the minority is given in dashed lines. The energies are given with respect to εF.
The in-gap states are present in surface and bulk calculations. The band gap is highlighted with a
light blue background.

our system is characterized by a (6× 6) Hamiltonian:

Hi =



ε↑i 0 V s
~ki

V s
~ki

V b
~ki

V b
~ki

0 ε↓i V s
~ki

V s
~ki

V b
~ki

V b
~ki(

V s
~k ′i

)∗ (
V s
~k ′i

)∗
0 ~vF(ky + ikx) 0 0(

V s
~k ′i

)∗ (
V s
~k ′i

)∗
~vF(ky − ikx) 0 0 0(

V b
~k ′i

)∗ (
V b
~k ′i

)∗
0 0 ε↑~k 0(

V b
~k ′i

)∗ (
V b
~k ′i

)∗
0 0 0 ε↓~k


.

(4.11)
V b
~ki

(V s
~ki

) represents the coupling of the impurity to the bulk (surface) state. In order to
access the impurity LDOS, we compute the local Green function given by:

Gσ
i (ε) =

1

ε− εσi − Σb
i (ε)− Σs

i(ε)
, (4.12)

where Σb
i (ε) and Σs

i(ε) represent the hybridization function for the bulk and surface states,
respectively. Using the local Green function, the LDOS n(ε) is computed as:

n(ε) = − 1

π

∆b(ε) + ∆s(ε)

(ε− εσi − Λb(ε)− Λs(ε))2 + (∆b(ε) + ∆s(ε))2
. (4.13)
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∆b(ε) (∆s(ε)) is the imaginary part of the bulk (surface) hybridization function, while
Λb(ε) (Λs(ε)) is the real part of the bulk (surface) hybridization function. The in-gap
states are expected to occur when ε − εσi − Λb(ε) − Λs(ε) = 0 and for (∆b(ε) + ∆s(ε))
small. For the present element, the in gap states shown in Fig. 4.8 are weakly affected
when the Cr impurity is moved from the bulk to the surface. In other words, the coupling
to the surface is rather small, thus, both Λs(ε) and ∆s(ε) are small.

First, we model the bulk band with a gapped density of states nb(ε) given by:

nb(ε) =

 nb for εbv < ε < εtv ,
nb for εbc < ε < εtc ,

0 elsewhere .
(4.14)

nb is the occupation number in the valence and conduction band. εbv (εbc) and εtv (εtc)
represent the bottom and the top of the valence (conduction) band, respectively. The ener-
gies corresponding to the bottom of the valence and the top of the conduction are cutoffs
for numerical convenience (not realistic values). Σb

i (ε) can be computed analytically as-
suming that V b

~ki
depends only weakly on ~k:

Σb
i (ε+ iη) =

∑
~k

|V b
~ki
|2

ε− ε~k + iη
,

= |〈V b
~ki
〉|2
∑
~k

1

ε− ε~k + iη
,

= Λb(ε) + i ∆b(ε) .

(4.15)

Then, the real and imaginary parts of Σb
i (ε+ iη) read:

Λb(ε+ iη) = −
nb|〈V b

~ki
〉|2

2

[
ln

(
(ε− εtv)2 + η2

(ε− εbv)2 + η2

)
+ ln

(
(ε− εtc)

2 + η2

(ε− εbc)2 + η2

)]
.

(4.16)

∆b(ε+ iη) = nb|〈V b
~ki
〉|2
[
arctan

(
ε− εtv

η

)
− arctan

(
ε− εbv

η

)]
+ nb|〈V b

~ki
〉|2
[
arctan

(
ε− εtc

η

)
− arctan

(
ε− εbc

η

)]
.

(4.17)

The bulk hybridization function is shown in Fig. 4.9. The parameters used in the model to
qualitatively reproduce the position and the width of the dxy peak are given in Table 4.5.
We also show in Fig. 4.9 the majority LDOS for the Cr impurity since it is where the
in-gap states are visible in the first principles calculations. Indeed, we observe in-gap
states at the bulk band edges. This is to be expected and can be seen from the real part
of the hybridization function. However, they seem to emerge from the lower band edge in
contrast to what is observed from first principles as shown in Fig. 4.8.
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Figure 4.9: The black curve represents the majority LDOS of Cr in Bi2Te3 within the Anderson
model. The green and blue curves represent the real and imaginary parts of the bulk hybridization
function, respectively. The red line represents ε − ε↑i , where ε↑i is the energy level of the majority
spin channel. The light blue background indicates the gap region. The model parameters are given
in Table 4.5.

Element ε↑i εbv εtv εbc εtc nb V b
~ki

η

Cr -1.10 -10 -0.1 0.1 10 0.15 1.15 0.02

Table 4.5: Anderson model parameters used to compute the bulk hybridization function and for
majority LDOS of Cr. η is an artificial broadening added to mimic the small imaginary part of the
energy included in the first principles simulations. All the parameters are given in eV except nb

which is given in states/eV.

We now investigate the contribution of the topological surface state described by the
Dirac HamiltonianHD. Its hybridization with the impurity is characterized by the function
Σs
i(ε), which can be estimated assuming that the LDOS of the surface states is linear within

a certain energy window and is then connected to the flat bulk bands, which is needed to
avoid spurious peaks in Λs(ε) at ε = ±ε0:

ns(ε) =


|ε|
ε20

for −ε0 < ε < ε0 ,
1
ε0

for εtv < ε < −ε0 ,
1
ε0

for ε0 < ε < εtc ,
0 elsewhere .

(4.18)

ε0 is the cutoff energy determining where the linear dispersion ends. When assuming that
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V s
~ki

depends weakly on ~k then the real part of Σs
i(ε) is given by:

Λs(ε+ iη) =
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〉|2ε
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(4.19)

And the imaginary part reads:

∆s(ε+ iη) =
|〈V s

~ki
〉|2η
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(4.20)

For simplicity these equations have been derived assuming that the Dirac point is located
at εD = 0. The expression for a finite εD can be obtained by replacing ε with ε − εD in
Eqs. (4.19) and (4.20). If we consider Eq. (4.13) only in the presence of the topological
surface state, then to obtain an in-gap state: ε− ε↑i = Λs(ε) and ∆s(ε) must be small. i.e
Λs(ε) and ε− ε↑i must intersect near εD. We take the example of a coupling to the surface
state V s

~ki
= 0.25 eV (smaller compared to the bulk one since the coupling to the surface

is rather small) and plot in Fig. 4.10 the real and imaginary parts of Σs
i(ε) and ε − ε↑i .

The crossing near εD leading to an in-gap state is not observed for this particular case. It
can occur for strong coupling constants, but this goes against what is observed from first
principles, where obviously the coupling to the surface state is not strong enough to create
in-gap states.

Element ε↑i εbv εtc ε0 V s
~ki

εD η

Cr -1.10 -10 10 0.3 0.25 0.2 0.02

Table 4.6: Anderson model parameters used to compute the surface hybridization function, and
center of the majority spin channel of Cr. We used the same η as in to the bulk case. All the
parameters are given in eV.

The model qualitatively reproduces the in-gap state observed from first-principles,
which originates from the coupling to the bulk band edges. A very important outcome
of the model is that the presence of the in-gap states requires that the impurity d-peak
should be close to the band gap edges, this ensures the presence of electrons that will be
localized at the band edges (example: majority spin channel of Co, Mn and Fe in Bi2Te3).
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Figure 4.10: The red and blue curves represent the real and imaginary parts of the surface hy-
bridization function, respectively. While the green curve shows ε− ε↑i . The Dirac point is located at
εD = −0.2 eV. The used model parameters are given in Table 4.6.

However, a d-peak located too close to the band edges will induce in-gap states but those
will be merged with the d-peaks (example: minority spin channel of Fe and Co in Bi2Te3).
That explains why Cr is the best choice to observe these in-gap states decoupled from the
usual virtual bound states.

4.6 Magnetocrystalline anisotropy
We now discuss the magnetocrystalline anisotropy energy (MAE) for 3d and 4d impuri-
ties embedded Bi2Te3 using a setup similar to Sec. 4.3.1. As mentioned earlier, the sign
of the MAE was invoked as an ingredient to functionalize the topological surface state by
opening a gap if the magnetic moments are perpendicular to the surface. Also the explo-
ration of the magnetic stability and manipulation of their spin hinge on the MAE. We apply
three different methods to extract the MAE. The magnetic moments are self-consistently
converged along z-axis in all the methods. First, we use band energy differences rely-
ing on the magnetic force theorem discussed in Sec. 2.5.1: a one shot calculation where
the magnetic moments are rotated to the x-axis is performed, the anisotropy is obtained
from the band energy difference for the two magnetic configurations. Second, the torque
method, the details are discussed in Sec. 2.5.2 we compute the magnetic torque for two
deviation angles 45◦ (away from self-consistency) and 5◦ (near self-consistency) from the
z-axis. Finally, we extract the MAE from the static magnetic susceptibility obtained from
TD-DFT mapped into the phenomenological LLG equation (see Sec. 2.6.4).

We compare the three different methods and discuss the validity of the magnetic force
theorem for the considered impurities, then we study the behavior of MAE with respect
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to the real space cluster size. We also computed the MAE of the impurities embedded
in a Bi2Se3 surface. Finally, we explore the impact of the topological surface state by
comparing the MAE obtained for the same impurities embedded in the bulk and in the
surface.

4.6.1 Magnetocrystalline anisotropy for 3d and 4d impurities in Bi2Te3

The MAE shown in Fig. 4.11a for Cr, Mn, Fe and Co is obtained using the different
methods mentioned previously. Cr and Fe present an in-plane magnetic anisotropy, i.e.
K = εband( ~Ms ‖ z) − εband( ~Ms ‖ x) > 0, while for Mn and Co the easy axis is out-of-
plane (K < 0). Mn displays a small MAE, this can be understood when using the so-called
Bruno formula [107], where the magnetic anisotropy is related to the orbital moment.
In our sign convention: K ∝ −ζ2 (Mz

l − Mx
l ). ζ represents the spin-orbit interaction

constant for the magnetic atom and Mz
l (Mx

l ) is the value of the orbital moment when
the spin moment points along the z-axis (x-axis). From this formula, one expects a low
MAE when the orbital moment is small. Also, the spin moment should preferably point
along the direction maximizing the orbital moment. Thus, Cr and Mn are expected to have
a weak MAE since they exhibit small orbital moments (as shown in Table 4.2). However,
in the case of Cr, the MAE is around ∼ 1 meV in disagreement with Bruno’s formula. Fe
and Co display large orbital moments resulting in a relatively large MAE. The direction
of the easy axis for Fe and Co can also be explained using Bruno’s formula, since Fe (Co)
displays a larger orbital moment when the spin moment is in-plane (out-of-plane) as shown
in Fig. 4.12a. Moreover, Fig. 4.11a also shows that the four different calculations are in
good agreement for Cr and Mn, however, for Fe and Co, KTorque(45◦) and KEband differs
from KTorque(5◦) and KSusc by a few meV’s.

In order to explain these differences, we show in Fig. 4.12a the change in the ground
state properties of the impurity upon 90◦ rotation of the magnetic moment (z → x−axis)
for the considered 3d impurities (one shot calculation). There is a large change in the
charge and spin moment for Fe and Co compared to Cr and Mn. This can be traced back
to the LDOS. Indeed, Fe and Co display a high LDOS at εF, thus, a rotation of the magnetic
moments leads to change in the position of the 3d peak around εF causing a large change
in the charge (i.e. in the density). The latter one violates the assumptions justifying the
magnetic force theorem (in the frozen potential approximation). Similar effects where
observed for Co adatoms deposited on a Cu(111) surface in Ref. [194]. This indicates that
one has to be careful with the magnitude of the rotation angle used to extract the MAE.
Thus, a small deviation angle should be considered. Furthermore, the use of the torque
method implicitly including the Lloyd’s formula (see Sec. 2.4.4) with a small deviation
angle corrects for such errors. One can show that the magnetic susceptibility includes
such corrections as well. Indeed, KSusc and KTorque(5◦) can be connected. One can derive
a formula for the torque following the same steps as in Sec. 2.5.2 but considering that the
easy axis is along the z-direction and assuming a small rotation angle θ in the (xz)-plane,
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Figure 4.11: a) Comparison of the MAE for 3d impurities embedded in Bi2Te3 (111) surface at a Bi
site from the subsurface layer. The green curve is obtained using the band energy differences (90◦

rotation of the spin moment). The orange curve is obtained using the torque method with the spin
moment tilted 5◦ away from the z-axis. The blue curve is obtained using the torque method with the
spin moment tilted 45◦ away from the z-axis. The red curve is obtained from the static part of the
magnetic susceptibility (linear response). b) Same as in a) but for a Bi2Se3 surface. For Cr the easy
axis of changed from in-plane to out-of-plane.
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then the torque reads:

Tθ =
∂εband

∂θ
,

= − 1

π
Im Trσ

∫ εF

−∞
dε (ε− εF)

∂G(ε)

∂θ
.

(4.21)

The first order derivative of the Green function can be expressed using the Kohn-Sham
Hamiltonian (see Sec.2.5.2):

∂G(ε)

∂θ
= G(ε)

∂HKS

∂θ
G(ε) . (4.22)

Assuming that the length of ~Bxc remains unchanged upon a rotation with a small angle θ,
HKS and θ are simply related via:

HKS = H0 12 +Bxc ~σ · ~eM .

= H0 12 +Bxc σx sin θ +Bxc σz cos θ .
(4.23)

H0 is the part of the Hamiltonian which is independent of θ. Using Eq. (4.23), we can
compute the first order derivative ofHKS according to θ:

∂HKS

∂θ
= Bxc [σx cos θ − σz sin θ] . (4.24)

When combining the previous equation with Eq. (4.21) and Eq. (4.22), we obtain the
following expression for the torque:

Tθ = − 1

π
Im Trσ

∫ εF

−∞
dε (ε− εF)BxcG(ε) [σx cos θ − σz sin θ]G(ε) .

= − 1

π
Im Trσ

∫ εF

−∞
dεBxc [G(ε)σx cos θ −G(ε)σz sin θ] .

(4.25)

The previous expression was obtained after performing a partial integration as done in
Sec. 2.5.2. When considering a small rotation angle, then G(ε), i.e. the Green function
for the rotated ~Bxc can be related to the unperturbed Green function G0(ε) of the system
where ~Bxc points along the z-axis via:

G(ε) ≈ G0(ε) +G0(ε) ∆ ~Bxc · ~σG0(ε) . (4.26)

∆ ~Bxc is given by:

∆ ~Bxc = Bxc (sin θ, 0, cos θ − 1) ,

≈ Bxc

(
θ, 0,−θ

2

2

)
.

(4.27)

The last expression from the previous equation was obtained assuming that the rotation
angle θ is small. We now replace G(ε) in Eq. (4.25) by its expression in Eq. (4.26), we
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also expand cos θ and sin θ for θ small and retain only the linear terms:

Tθ = − 1

π
Im Trσ

∫ εF

−∞
dεBxc [σxG0(ε)σxG0(ε)Bxc − σzG0(ε)] θ .

= Bxc
[
χ0
xx(0)Bxc −Mz

]
θ .

(4.28)

χ0
xx(0) is the static Kohn-Sham magnetic susceptibility defined in Eq. (2.108) and Mz

is the length of the magnetic moment in the z-direction when Bxc ‖ z-axis. Using the
definition of the spin-flip magnetic susceptibility given in Eq. (2.116) in the static limit
(i.e. χ0

xy(0) = χ0
yx(0) = 0) and that x and y-directions are equivalent (uniaxial system),

the torque reads:

Tθ = Bxc
[
2χ0

+−(0)Bxc −Mz

]
θ . (4.29)

The transversal exchange-correlation kernel Kxc
⊥ and Bxc are related via:

Bxc =
Kxc
⊥Mz

2
with Kxc

⊥ =
(
χ0

+−(0)
)−1 − χ−1

+−(0) . (4.30)

Relying on the previous equations, we can then express Tθ in terms of the static magnetic
susceptibilities (Kohn-Sham and enhanced) as:

Tθ = −M
2
z

2

[
χ−1

+−(0)− χ0
+−(0)χ−2

+−(0)
]
θ . (4.31)

χ+−(0) is the static magnetic susceptibility obtained from TD-DFT, which can be related
to KSusc via χ+−(0) =

M2
z

4KSusc
(see Sec. 2.6.4). Thus, we can now write Tθ in terms of

KSusc as:

Tθ = −
(

2KSusc −
8χ0

+−(0)K2
Susc

M2
z

)
θ . (4.32)

The torque Tθ can also be written as:

Tθ =
∂εint

∂θ
and εint = KTorque(5◦) cos2 θ .

= −2KTorque(5◦) sin θ cos θ .
(4.33)

After expanding for a small angle Tθ reads:

Tθ = −2KTorque(5◦) θ . (4.34)

When comparing Eq. (4.32) and Eq. (4.34), we establish a relation betweenKTorque(5◦) and
KSusc:

KSusc =
KTorque(5◦)(

1− 4χ0
+−(0)KSusc

M2
z

) ,

∼ KTorque(5◦)(
1 + Ba

Bxc

) .

(4.35)
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Ba = − 2KSusc
Mz

is the anisotropy field given in Eq. (2.131) and Bxc ∼ Mz

2χ0
+−(0)

(see
Eq. (2.122)). KSusc and KTorque(5◦) are close to each other since when evaluating KSusc,
one considers a small perturbation with respect to the initial state. However, KSusc is a
renormalized quantity as shown in Eq. (4.35), if the renormalization is important KSusc
and KTorque(5◦) may differ. Using the torque method at 5◦ is more reliable than the band
energy based method. But one has to be careful when comparing with experimental mea-
surements. In our view, KSusc and KTorque(5◦) should be used when comparing to possible
future ISTS experiments. Since in such experiments the deviation of the magnetic moment
from its easy axis are rather small. The renormalization of the MAE shown in Eq. (4.35)
is similar to the one observed for magnetic interactions when they are computed from the
magnetic susceptibility [195, 196].

We now move on to discuss the MAE for 4d impurities, the MAE for Nb, Mo and
Tc is shown in Fig. 4.13a. All the 4d elements display an in-plane magnetic anisotropy.
Nb has a rather large MAE. Once more, the small value of the orbital moment for Mo
induces a small MAE. Nb and Tc have large orbital moments (see Table 4.3). As shown
in Fig. 4.12b, there are large changes in ∆Q (change in the valence charge) and ∆Ms
upon a rotation of the spin moment from the z-axis to the x-axis for Tc. This is due to a
high LDOS at εF (see Fig. 4.6a). Therefore, {KTorque(45◦),KEband} and {KTorque(5◦),KSusc}
give different results for the MAE. An exception is made for Nb even though the LDOS
presents a sharp peak at εF, the change in the charge and spin moment is small as shown
in Fig. 4.12b. This indicates that the majority-spin band of Nb is weakly affected by the
rotation of the spin moment. Thus, the different methods are in a good agreement.

4.6.2 Magnetocrystalline anisotropy and real space cluster size

In the last section, we have shown the MAE for 3d and 4d impurities in Bi2Te3 using a real
space cluster containing 102 sites. A natural question rises: Since the MAE is a non-local
quantity (as discussed in Sec. 2.5.1), how does it depend on the real space cluster size? In
Ref. [112], it was predicted that substrates with heavy elements, which can be easily spin
polarized by a proximity effect can lead to non-trivial contributions to the non-local part of
the MAE. Therefore, we show in Fig. 4.14, the dependence of the MAE for the considered
3d impurities as a function of the number of sites in the real space cluster (Nsites). We
notice a change in the amplitude of the MAE for all the considered elements. Nonetheless,
the easy axis remains in-plane for Cr and Fe and out-of-plane for Mn and Co. We also
notice that independently from the size of the cluster {KTorque(5◦),KSusc} give very similar
results. Overall for all the 3d elements the MAE is stable regarding the number of sites
in the real space cluster. This can be attributed to a lower induced spin polarization in the
topological insulator in comparison with a Pt surface for example [112].

We also did a similar analysis for the 4d elements, since the latter ones tend to hybridize
more with the substrate as discussed in Sec. 4.3.3. The results are shown in Fig. 4.15. Nb
and Mo display a change in the MAE when Nsites increases. These changes are relatively
small and do not affect the direction of the easy axis. In contrast, for Tc there is a ”jump”
in the MAE from 1.2 meV (in-plane) to −0.6 meV (out-of-plane) when Nsites changes
from 60 sites to 80. This can be understood from the LDOS of Tc shown in Fig. 4.6a. We
see that Tc has a very flat LDOS compared to Nb and Mo due to a higher hybridization
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Figure 4.12: a) Change in the valence charge of the impurity ∆Q = Qz − Qx (black curve), spin
moment ∆Ms = Mz

s −Mx
s (red curve) and orbital moment ∆Ml = Mz

l −Mx
l (blue curve) upon a

rotation of the spin moment from z-axis to the x-axis. The 3d impurities are embedded in a Bi2Te3
(111) surface at a Bi site from the subsurface layer. For Fe and Co, ∆Q and ∆Ms are relatively large
invalidating the use of the magnetic force theorem in this way. b) Same as in a) but for 4d impurities.
∆Q and ∆Ms are also large for Tc.
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Figure 4.13: a) Comparison of the MAE for 4d impurities embedded in Bi2Te3 (111) surface at a Bi
site from the subsurface layer. The green curve is obtained using the band energy differences (90◦

rotation of the spin moment). The orange curve is obtained using the torque method with the spin
moment tilted 5◦ away from the z-axis. The blue curve is obtained using the torque method with the
spin moment tilted 45◦ away from the z-axis. The red curve is obtained from the static part of the
magnetic susceptibility (linear response). b) Same as in a) but for a Bi2Se3 surface. Ru is magnetic
and displays a large MAE (KSusc ∼ 8 meV), while Pd shows a relatively small MAE.
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Elements Cr Mn Fe Co
KTorque(5◦)(Bi2Te3) 1.123 -0.183 4.158 -6.393
KTorque(5◦)(Bi2Se3) -0.392 0.035 6.336 -5.733
KSusc(Bi2Te3) 0.959 -0.201 4.302 -6.725
KSusc(Bi2Se3) 0.088 0.005 6.018 -5.894

Table 4.7: Comparison between the MAE of 3d impurities obtained with KTorque(5◦) and KSusc

embedded in two different hosts Bi2Te3 and Bi2Se3. The real space cluster contains 102 sites.

making the surrounding substrate atoms more sensitive to Tc, which impacts the non-local
part of the MAE.

4.6.3 Magnetocrystalline anisotropy for 3d and 4d impurities in Bi2Se3
From the comparison between the ground state properties of 3d and 4d in Bi2Te3 and
Bi2Se3 done in Sec. 4.3.3, we noticed that changing the substrate affects the ground state
properties, particularly the orbital moments. This suggests that the MAE might also be
affected considerably when trading Bi2Te3 for Bi2Se3 (according to Bruno’s formula).
Therefore, we once more consider a similar setup as in Sec. 4.3.1 and compute the MAE
for 3d and 4d impurities in Bi2Se3. Similarly to the Bi2Te3 case and for the same reasons,
the MAE obtained using different methods may differ.
KTorque(5◦) and KSusc obtained for 3d impurities in Bi2Se3 is compared to the MAE’s

obtained in the Bi2Te3 host (Fig. 4.11b). Cr and Mn have a very small anisotropy, with a
noticeable decrease for Cr. The easy axis changed from in-plane to out-of-plane compared
to the Bi2Te3 case. For Fe and Co the easy axis remains the same, while the MAE increases
by almost 2 meV for Fe and decreased by 1 meV for Co. Overall, we observe the same
trend for the MAE with band filling of the 3d elements compared to the Bi2Te3 host. A
comparison of the values of the MAE is shown in the Table 4.7.

We now turn to the 4d elements. The MAE is shown in Fig. 4.13b, from which one
notices that Nb, Mo, and Tc have an in-plane easy axis as in the Bi2Te3 case. For instance,
the strong hybridization of Tc with the substrate leads to a drastic change in the MAE.
KSusc increases from 0.4 meV to 3.9 meV. A similar trend is followed by Nb, where KSusc
went from 4.0 meV to 5.5 meV, while it remains weak for Mo. Ru, which is non magnetic
in the Bi2Te3 host displays a relatively large out-of-plane MAE of −8.2 meV. Finally Pd
shows a weak out-of-plane anisotropy of −0.4 meV as well. In summary, the 4d elements
are once more the ones most affected by the change of the substrate due to their strong
hybridization. A comparison of the values of the MAE for the 4d impurities in the two
hosts is given in Table 4.8.

4.6.4 Magnetocrystalline anisotropy for 3d and 4d impurities in bulk
Bi2Te3

We finish our discussion about the MAE of 3d and 4d impurities in topological insula-
tors by studying its dependence on the surface state. Therefore, we consider 3d and 4d
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Figure 4.14: Study of MAE of 3d impurities embedded in Bi2Te3 (111) surface at a Bi site from the
subsurface layer as a function of the real space cluster size (Nsites). For each impurity a comparison
of four different methods determining the MAE is made. The green curve is obtained using the band
energy differences (90◦ rotation of the spin moment). The orange curve is obtained using the torque
method with the spin moment tilted 5◦ away from the z-axis. The blue curve is obtained using the
torque method with the spin moment tilted 45◦ away from the z-axis. The red curve is obtained
from the static part of the magnetic susceptibility (linear response).

Elements Nb Mo Tc Ru Pd
KTorque(5◦)(Bi2Te3) 3.881 0.520 0.597 - - - - - -
KTorque(5◦)(Bi2Se3) 5.410 0.120 4.976 -6.695 -0.697
KSusc(Bi2Te3) 4.090 0.417 0.353 - - - - - -
KSusc(Bi2Se3) 5.452 0.101 3.847 -8.189 -0.431

Table 4.8: Comparison between the MAE of 4d impurities obtained with KTorque(5◦) and KSusc

embedded in two different hosts Bi2Te3 and Bi2Se3. The real space cluster contains 102 sites.
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Figure 4.15: Study of MAE of 4d impurities embedded in Bi2Te3 (111) surface at a Bi site from the
subsurface layer as a function of the real space cluster size (Nsites). For each impurity a comparison
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impurities in bulk Bi2Te3 embedded at a Bi site. In presence of inversion symmetry no
surface states are observed, thus, we can compare the MAE obtained for bulk with the one
previously computed for the Bi2Te3 (111) surface, and explicitly identify the surface state
contribution to the MAE. The bulk structure is uniaxial, therefore, we expect a non neg-
ligible MAE. A comparison between the MAE obtained for the bulk Bi2Te3 and surface
is shown in Fig. 4.16a. Interestingly, despite a rather small hybridization with the surface
state as discussed in Sec. 4.5, when switching from surface to bulk the easy axis of Cr
changes from in-plane to out-of-plane with an absolute value of the MAE of ∼ 1 meV.
This can be understood by considering that MAE is related to anisotropy in the orbital
moments (Bruno fomula), which are more sensitive to hybridization details. For Mn in
bulk, the MAE is small similarly to the surface case. Fe and Co have the same easy axis.
However, there is a decrease of the MAE, which can be attributed to the missing contri-
bution from the surface state. Indeed, there is a change in the intensity and occupation of
the in-gap states generated in the bulk or at the surface of the topological insulator, which
makes the MAE more sensitive to the surface state. Furthermore, we also compared the
MAE energies for the 4d elements in Fig. 4.16b. We notice that the MAE for Nb decreased
substantially (3 meV), it is still small for Mo and unaltered for Tc. In conclusion, the sur-
face state has important an impact for some elements such as Cr, Co and Nb, while, it has
a weak impact or none for other elements like Mn and Mo. The latter ones are those for
which either the in-gap state intensity is very small (Mn) or is located away from εF (Mo).

As an important remark, it is worth mentioning that for some elements such as Tc
and Co, KTorque(5◦) and KSusc do not have a good agreement in the bulk compared to the
surface. As stated earlier in Sec. 4.6.1, they may lead to different results.

4.7 Spin dynamics of 3d and 4d impurities in topological
insulators

After a detailed discussion of the ground state properties and the MAE of 3d and 4d im-
purities embedded in Bi2Te3 and Bi2Se3, we now study their spin dynamics. We aim at
investigating the ability of exciting and manipulating them with ISTS. Furthermore, our
goal is to explore the basic characteristic of the spin excitations such as their lifetimes and
their energy range, which have been so far limited to metals, semi-insulating/insulating
films [37, 197, 198, 199, 200]. The computation of the dynamical magnetic susceptibility
(χαβ(ω)) within linear response theory allows to access the response of the system to an
external frequency dependent magnetic field δ ~B(ω) (see Sec. 2.6.1).

We focus on transverse spin excitations, which were observed experimentally for im-
purities on surfaces using ISTS as done in Refs. [198, 201, 202, 203, 37, 204]. The sig-
nature of the spin excitations is usually observed as steps in the differential conductance
curves, which can be traced back to the transverse spins excitations in the transverse mag-
netic susceptibility [37]. Several first principles calculations were performed to investi-
gate transversal spin excitations of magnetic atoms deposited on nonmagnetic surfaces in
Ref. [40, 205, 206], using the KKR Green function method. Thus, the concept of sim-
ulating transverse spin excitations in magnetic atoms is well established. A more recent
investigation that includes the SOI was done in Ref. [41]. The SOI generates a magnetic
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Figure 4.16: a) Comparison between the MAE of 3d impurities embedded in Bi2Te3 (111) surface
at a Bi site from the subsurface layer, and 3d impurities embedded in Bi2Te3 bulk (Bi site). The black
curve is obtained using the torque method with the spin moment tilted 5◦ away from the z-axis. The
red curve is obtained from the static part of the magnetic susceptibility (linear response). Due to
the presence of inversion symmetry (bulk), the easy axis for Cr impurities changed from in-plane to
out-of-plane. b) Same as in a) but for 4d impurities. The MAE of Nb diminished considerably when
moving from the surface to the bulk.
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anisotropy resulting in an anisotropy field (see Sec. 4.6.1), which leads to an opening of a
gap in the magnetic spectrum.

We perform a systematic investigation of the transversal spin excitations of 3d and 4d
impurities in Bi2Te3 and Bi2Se3. The intricate interplay between the strong spin-orbit in-
teraction of the topological insulator and the presence of the surface state will be explored
in the context of spin excitations. The impact of the topological surface state on the spin
dynamics was investigated by comparing the spin excitations obtained for 3d and 4d im-
purities embedded in bulk Bi2Te3 to the ones obtained at the surface. As will be shown in
Sec. 4.7.2, dynamical corrections can be important. There is a shift in the position of the
resonances observed in the spin excitation spectrum away from the values predicted using
the ground state quantities.

4.7.1 Transversal dynamical response
In practice, the impurities display a relatively large magnetic moment while the induced
moments in the surrounding substrate atoms are rather small. Therefore, we compute the
magnetic susceptibility only at the impurity site, but we include the contribution of the
surroundings to the kernel computed at the impurity site (the procedure to compute the
kernel is shown in Sec. 2.6.2). In order to access the spin excitation spectrum, we define
a spatially averaged quantity at the impurity site. This quantity contains the magnetic
response of the impurity to an external frequency dependent magnetic field and is defined
as:

χαβ(ω) =

∫
d~r

∫
d~r ′ χαβ(~r, ~r ′, ω) . (4.36)

The integrals are performed over the cell containing the impurity and χαβ(~r, ~r ′, ω) is
the enhanced magnetic susceptibility defined in Sec. 2.6.1. χαβ(ω) is a rank 2 tensor
({α, β} = {x, y, z, n}, n is for the charge) and ω is the frequency. Considering that the
magnetization is along the z-direction and that we focus on the transverse response, we
compute the spin-flip magnetic susceptibility containing all the components of the xy-
block given as:

χ+−(ω) =
1

4
(χxx(ω)− iχxy(ω) + iχyx(ω) + χyy(ω)) , (4.37)

which measures the probability of lowering the spin by ~ when extracting the imaginary
part.

4.7.2 Spin excitations of 3d impurities in Bi2Te3
Here we discuss the spin excitation spectrum for Cr, Mn, Fe and Co. In Fig. 4.17a we
show the imaginary part of the transverse magnetic susceptibility, which represents the
density of states of the magnetic excitations. In the absence of an external magnetic field,
the position of the resonance is located at finite frequency. This is a consequence of spin
rotational symmetry breaking (i.e. no Goldstone mode) due to the magnetic anisotropy
(SOI), which provides an energy barrier that the moment has to overcome in order to be
excited. The lifetime of the excitations τ is related to the inverse of the full width at half
maximum (FWHM) Γ of the resonance with τ = ~

Γ .
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The dashed lines in Fig. 4.17 represent the position of the resonance obtained using
the ground state quantities only [41]:

ωgs
max = −2γKTorque(5◦)

Ms
(4.38)

assuming γ = 2 (gyromagnetic ratio), KTorque(5◦) is the MAE obtained using the torque
method at 5◦ and Ms is the spin moment. ωgs

max is in a qualitative agreement with the
resonance observed in our dynamical calculations, however, it fails to give a quantitative
description highlighting the importance of dynamical corrections to γ.

In order to include these dynamical corrections, we consider the mapping of the dy-
namical spin-flip magnetic susceptibility χ+−(ω) obtained from our TD-DFT calculations
to a generalized LLG equation, which includes a tensorial damping and nutation [115].
The details of the mapping are given in Sec. 2.6.4, where we have shown that the spin-flip
magnetic susceptibility within the generalized LLG model reads:

χLLG
+− (ω) =

1

2

Msγ

− 2KSuscγ
Ms

− (1 + Ga⊥ + iGs‖)ω + (−Is‖ + iIa⊥)ω2
. (4.39)

Gs‖ (Is‖) and Ga⊥ (Ia⊥) represents the symmetric and antisymmetric transversal components
of damping (nutation) tensor, respectively. These parameters are defined in Sec. 2.6.4.
They are extracted using Eq. (2.138) to fit {χxx(ω), χxy(ω)} obtained from TD-DFT. In
Ref. [207], it is shown that Gs

‖ ∝ n↓(εF)n↑(εF), where n↓(εF) (n↑(εF)) is the LDOS at
εF for the minority (majority) spin channel. This connection between the damping and
the electronic structure can be understood in the following way: when there are no states
at εF, the coupling between the impurity and the host electrons is weak, therefore, the
excitation has a longer lifetime with a small damping. In fact the product of density of
states at εF measures the density of electron-hole excitations of opposite spin, providing
the main mechanism for lowering the lifetime of the spin excitations. Ga⊥ accounts for the
change of the gyromagnetic ratio. Indeed, we can define an effective one, γeff = γ

1+Ga⊥
.

This shift of γ is attributed to the hybridization with the host as well, since in the limit
n↓(εF) = n↑(εF) = 0 one recovers γ = 2 as shown in Ref. [207].

From Eq. (4.39) and if one does not include the imaginary terms, we expect a resonance
when − 2KSuscγ

Ms
− ω − Ga⊥ω − Is‖ω2 = 0. This provides an approximate threshold for the

nutation term to become relevant for the spin-excitational behavior, when the resonance is
located at frequencies ω > ωc =

Ga⊥
Is
‖

, it is affected by the nutation. When neglecting the

contribution of the nutation, the resonance frequency is given by:

ωNI
max = − γ√

1 +
(
Gs‖
)2

+ 2Ga⊥ + (Ga⊥)
2

2KSusc

Ms
, (4.40)

where ωNI
max is defined as the resonance frequency without including the nutation. We see

that the resonance frequency is renormalized by Gs‖ and Ga⊥, which account for the damping
of the precession and the renormalization of γ, respectively.

The LLG parameters obtained for 3d impurities embedded in Bi2Te3 are shown in Ta-
ble 4.9. The MAE and ωmax are given in meV, the symmetric and antisymmetric transversal
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Element Ms(µB) Gs‖ Ga⊥ Is‖ Ia⊥ KSusc ωNI
max

ωc
ωNI

max

Cr (Bi2Te3) 3.844 0.018 -0.245 0.003 0.002 0.959 1.322 58
Cr (Bi2Se3) 3.671 0.037 -0.153 0.000 0.001 0.090 0.115 2455
Mn (Bi2Te3) 4.412 0.000 0.109 0.000 0.000 -0.201 0.164 20921
Mn (Bi2Se3) 4.421 0.000 0.101 0.000 0.000 0.005 0.004 309979
Fe (Bi2Te3) 3.395 0.143 0.286 -0.002 -0.002 4.302 3.917 34
Fe (Bi2Se3) 3.482 0.112 0.125 0.001 -0.001 6.019 6.113 16
Co (Bi2Te3) 2.109 0.164 0.274 0.000 -0.004 -6.725 9.926 27
Co (Bi2Se3) 2.231 0.012 0.196 0.003 0.000 -5.894 8.833 8

Table 4.9: LLG parameters for 3d impurities embedded in Bi2Te3 and in Bi2Se3 obtained from
fitting the magnetic susceptibility computed using TD-DFT. Ms is the spin moment, Gs‖ and Ga⊥ are
the transversal components of the damping tensor, Is‖ and Ia⊥ transversal components of the nutation
tensor, they are given in meV−1. KSusc is the MAE obtained from the magnetic susceptibility. ωNI

max

is the resonance frequency without including nutation (in meV) and the ratio ωc
ωNI

max
informs us about

the relevance of the nutation.

part of the nutation tensor Is‖ and Ia⊥ are given in meV−1. High values for Gs‖ correlates
with a high values of the LDOS at εF. This explains the higher values obtained for Fe
and Co compared to those of Cr and Mn since the former ones present a resonance in
the lower spin channel at εF. The negative sign of Ga⊥ for Cr predicts an enhancement of
the gyromagnetic ratio (i.e. γeff > 2) while it is reduced for the rest of the 3d elements.
The position of the resonance frequency is proportional to the MAE in agreement with
Eq. (4.40). We show in the last column of Table 4.9 the ratio ωc

ωNI
max
� 1 for all 3d ele-

ments, concluding that the nutation has no significant impact on the resonances observed
for 3d elements in Bi2Te3. A summary of the lifetimes of the spin excitations is shown in
Fig. 4.18.

4.7.3 Spin excitations of 4d impurities in Bi2Te3
We now replace 3d impurities with 4d and compute the spin excitation spectrum, it is
shown in Fig. 4.19a. Mo and Tc present sharp resonances resulting in high lifetimes as
displayed in Fig. 4.18, these resonances are located at very low frequency due to their
small MAE. Nb has a broad peak (small τ ) situated at rather high frequency due to its
large MAE and small value of the spin moment.

The fitted LLG parameters obtained from the spin excitation spectra are displayed
in Table 4.10. Similarly to the 3d case, a large LDOS at εF induces large values for
Gs‖ . γeff > 2 is slightly enhanced for Nb since Ga⊥ < 0 while γeff < 2 for Mo and Tc.
The ratio ωc

ωNI
max
� 1 for Mo and Tc, thus, the nutation is not affecting their spectrum.

However, for Nb ωc
ωNI

max
' 1, therefore, one expects the nutation coefficient Is‖ to have a

non-negligible impact on the resonance frequency. Indeed, ωNI
max shown in Table 4.10 does

not include the nutation correction. When we extract it directly from the spectrum in
Fig. 4.19a, we see that ωmax = 17.610 meV instead of ωNI

max = 16.313 meV, which is the
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Figure 4.17: a) Density of states of transverse spin excitations for 3d impurities embedded in
Bi2Te3. It has a Lorentzian form with a resonance located at the excitation energies of the system
(in the meV range). The dashed lines represent the position of the resonance without the dynamical
corrections from Eq. (4.38). b) Same as in a) but for a Bi2Se3 surface, where Mn, Cr and Co present
sharper resonances compared to the Bi2Te3 case.
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Figure 4.18: Summary of the lifetimes of the spin excitations for 3d and 4d impurities embedded in
Bi2Te3 and Bi2Se3. A logarithmic scale is used for a better comparison between the lifetimes. For
Mn very high lifetimes are observed, reaching microseconds in the Bi2Se3 case.
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Element Ms(µB) Gs‖ Ga⊥ Is‖ Ia⊥ KSusc ωNI
max

ωc
ωNI

max

Nb (Bi2Te3) 1.097 0.053 -0.087 0.004 0.002 4.091 16.313 1.3
Mo (Bi2Te3) 2.678 0.000 0.096 0.000 0.000 0.417 0.568 394
Tc (Bi2Te3) 2.493 0.172 0.099 -0.003 0.001 0.353 0.509 62
Tc (Bi2Se3) 2.534 0.512 0.081 -0.018 0.006 3.845 5.073 0.8
Ru (Bi2Se3) 0.564 0.852 -0.396 -0.039 0.003 -8.178 55.490 0.1
Pd (Bi2Se3) 0.578 0.094 1.824 -0.004 0.000 -0.431 1.055 414

Table 4.10: LLG parameters for 4d impurities embedded in Bi2Te3 and in Bi2Se3 obtained from
fitting the magnetic susceptibility computed using TD-DFT. Ms is the spin moment, Gs‖ and Ga⊥
are the transversal components of the damping tensor, Is‖ and Ia⊥ are the transversal components
of the nutation tensor, they are given in meV−1. KSusc is the MAE obtained from the magnetic
susceptibility. ωNI

max is the resonance frequency without including nutation (in meV) and the ratio
ωc
ωNI

max
informs us about the relevance of the nutation.

value obtained using Eq. (4.40), where the nutation is not included. We conclude that the
nutation has an important impact on the Nb impurities in Bi2Te3 leading to a repositioning
of the resonance frequency.

4.7.4 Spin excitations of 3d and 4d impurities in Bi2Se3
We now investigate the impact of the substrate on the spin excitation spectrum of 3d and 4d
impurities. Once more the Bi2Te3 surface is exchanged with Bi2Se3 and we consider the
same setup as in Sec. 4.3.1. We show the LLG parameters for 3d in Bi2Se3 in Table 4.9.
The damping parameters Gs‖ and Ga⊥ follow a similar trend compared to the Bi2Te3 case for
Cr, Mn and Fe. However, Gs‖ is one order of magnitude smaller compared to the Bi2Te3

case for Co. This can be observed in the spin excitation spectrum shown in Fig. 4.17b,
where Co exhibits a much sharper peak compared to the Bi2Te3 case with a higher lifetime
for the spin excitation (see Fig. 4.18). We notice that Cr has a resonance located at lower
frequency compared to the Bi2Te3 case. Mn is not observed on the plot since its resonance
is located almost at zero frequency. The nutation has no impact on the resonance frequency
of Cr, Mn and Fe but affects the one of Co causing a reduction from 8.83 meV without
nutation to 8.65 meV when it is included. Overall the spin dynamics of 3d adatoms in
Bi2Se3 is similar to the Bi2Te3 with noticeable differences for Co impurities.

The LLG parameters for the 4d elements were obtained as well. They are given in Ta-
ble 4.10, where we notice an increase of the damping Gs‖ for Tc which can be explained by
the increase of the majority LDOS at εF as seen in Fig. 4.6b compared to the Bi2Te3 case.
Ru has a very large damping with a very flat resonance (short lifetime for the excitation as
shown in Fig. 4.18) in contrast to Tc and Pd as seen in Fig. 4.19b. Pd has smaller damping
compared to Tc and Ru with a sharper resonance. The nutation has a negligible impact on
Pd since ωc

ωNI
max
� 1, while it has an small impact for Tc since it shifts ωNI

max = 5.07 meV to
ωmax = 4.70 meV when the nutation is included. Finally, Ru is the extreme limit where the
nutation leads to a dramatic shift in ωmax, indeed without nutation we obtain ωNI

max = 55.49
meV, while when including it one gets ωmax = 25.52 meV.
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Figure 4.19: a) Density of states of transverse spin excitations for 4d impurities embedded in
Bi2Te3. It has a Lorentzian form with a resonance located at the excitation energies of the system
(in the meV range). The dashed lines represent the position of the resonance without the dynami-
cal corrections from Eq. (4.38). b) Same as in a) but for a Bi2Se3 surface, where Tc has a higher
resonance frequency compared to the Bi2Se3 case.
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We do not show the spin excitation spectrum or the LLG parameters for Nb and Mo
since for these elements at low frequency (meV range) the non linear orders in frequency
of the Taylor expansion for the KS susceptibility are large, therefore, the second order
expansion used in these calculations (see Sec. 2.6.3) is not accurate enough to capture the
proper frequency dependency of the dynamical magnetic susceptibility.

4.7.5 Impact of the surface state on spin excitations of 3d and 4d im-
purities in Bi2Te3

Here the surface state contribution to the transversal spin excitations of 3d and 4d impu-
rities in Bi2Te3 is investigated. It can be identified by comparing the LLG parameters
obtained when the impurities are embedded in the bulk to the ones calculated for the sur-
face case. Therefore, we show a comparison in Table 4.11 for the 3d impurities. We used
the subscript “s” for surface quantities and “b” for bulk quantities. Gs‖ decreased when
moving from surface to bulk for Cr and Fe, this can be explained by the following: in the
bulk the hybridization is reduced due to the absence of the surface states, which reduces
the LDOS at εF as shown in Fig. 4.8 when comparing the LDOS of Cr embedded in bulk
and at the surface. However, Co is an exception since Gs‖ increased in the bulk case, which
is counter intuitive since in absence of the surface state, one expects less coupling to host
electrons. This can be understood when comparing the LDOS obtained for the bulk and
surface cases. Indeed, the minority-spin LDOS at εF is almost unchanged when going
from the surface to the bulk, while in the majority-spin channel the in-gap state is shifted
upwards, closer to εF. Thus, n↑(ε) increases and leads to a higher Gs‖ in the bulk for Co.
Ga⊥, which expresses the renormalization of γ, follows a similar trend as the surface case,
with the exception of Co once more where γeff > 2 in contrast to what is observed in
the surface case. The nutation is small for Cr, Mn and Fe and noticeable for Co since it
renormalizes ωNI

max from 4.24 meV without nutation to ωmax = 4.68 meV with nutation.
A similar comparison is done for 4d impurities and shown in Table 4.12. The damping
parameter Gs‖ increased for Nb and Mo in bulk. Analogously to the Co case, this can also
be attributed to a shift of the in-gap state towards εF, now in the minority-spin channel,
leading to an increase of the LDOS at εF. The nutation is negligible for Mo and Tc simi-
larly to the surface case and noticeable for Nb since it leads to a shift of ωNI

max = 5.07 meV
without the contribution of the nutation to ωmax = 5.43 meV when including it.

In summary, the surface state affects considerably the spin dynamics of 3d and 4d
impurities in Bi2Te3 especially the damping and in some cases such as Co the nutation as
well.

4.7.6 Transversal zero-point spin-fluctuations of 3d and 4d impurities
in Bi2Te3 and Bi2Se3

Experimentally, when observed with X-ray magnetic circular dichroism (XMCD) or ISTS,
3d adatoms have a substantial MAE in the meV range [27, 208, 201]. However, the same
elements display a paramagnetic signal when measured with spin-polarized scanning tun-
neling microscopy (SP-STM), i.e. the magnetic stability is destroyed locally [209, 150,
210]. For Ru and Rh impurities deposited on Ag(001) surface, even in presence of a
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Element Ms(µB) Gs‖ Ga⊥ Is‖ Ia⊥ KSusc ωNI
max

ωc
ωNI

max

Crs 3.844 0.018 -0.245 0.003 0.002 0.959 1.322 58
Crb 3.823 0.004 -0.215 0.000 0.000 -0.824 1.090 302
Mns 4.412 0.000 0.109 0.000 0.000 -0.201 0.164 20921
Mnb 4.335 0.000 0.118 0.000 0.000 -0.216 0.178 4816
Fes 3.395 0.143 0.286 -0.002 -0.002 4.302 3.917 34
Feb 3.294 0.045 0.234 0.004 0.002 3.055 3.004 19
Cos 2.109 0.164 0.274 0.000 -0.004 -6.725 9.926 27
Cob 1.977 0.307 -0.011 -0.011 0.005 -2.168 4.237 0.2

Table 4.11: Comparison between the LLG parameters for 3d impurities embedded in Bi2Te3 a bulk
Bi site (b) and in the first subsurface Bi layer (s). The parameters are obtained from fitting the mag-
netic susceptibility computed using TD-DFT. Ms is the spin moment, Gs‖ and Ga⊥ are the transversal
components of the damping tensor, Is‖ and Ia⊥ are the transversal components of the nutation tensor,
they are given in meV−1. KSusc is the MAE obtained from the magnetic susceptibility. ωNI

max is the
resonance frequency without including nutation (in meV) and the ratio ωc

ωNI
max

informs us about the
relevance of the nutation.

Element Ms(µB) Gs‖ Ga⊥ Is‖ Ia⊥ KSusc ωNI
max

ωc
ωNI

max

Nbs 1.097 0.053 -0.087 0.004 0.002 4.091 16.313 1.3
Nbb 0.740 0.314 0.049 0.005 -0.001 1.028 5.074 2
Mos 2.678 0.000 0.096 0.000 0.000 0.417 0.568 394
Mob 2.527 0.012 0.151 0.000 0.000 0.454 0.624 518
Tcs 2.493 0.172 0.099 -0.003 0.001 0.353 0.509 62
Tcb 2.057 0.059 0.072 0.006 0.002 0.755 1.368 9

Table 4.12: Comparison between the LLG parameters for 4d impurities embedded in Bi2Te3 a bulk
Bi site (b) and in the first subsurface Bi layer (s). The parameters are obtained from fitting the mag-
netic susceptibility computed using TD-DFT. Ms is the spin moment, Gs‖ and Ga⊥ are the transversal
components of the damping tensor, Is‖ and Ia⊥ are the transversal components of the nutation tensor,
they are given in meV−1. KSusc is the MAE obtained from the magnetic susceptibility. ωNI

max is the
resonance frequency without including nutation (in meV) and the ratio ωc

ωNI
max

informs us about the
relevance of the nutation.
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static magnetic field in an XMCD experiment, no magnetic response is observed [211].
Recently, a breakthrough has been made by Natterer et al. [212]: They used SP-STM
and showed that a Ho atom deposited on MgO/Ag(100) surface can retain its magnetic
information over several hours (magnetic remanence). To explain the contradictions be-
tween large MAE and the presence of fluctuations, Azpiroz et al. evaluated zero-point
spin-fluctuations (ZPSF) of 3d and 4d adatoms deposited on Cu(111) and Ag(001) sur-
faces [42]. They found them to be large and of the order of the spin moments. These fluc-
tuations are related to the Heisenberg uncertainty principle and can be used to ascertain the
stability of a magnetic moment. Indeed, large ZPSF impact the magnetic anisotropy en-
ergy by effectively reducing it by a large magnitude. This provides a possible explanation
for the paramagnetic behavior of the adatoms.

The knowledge of the dynamical magnetic susceptibility χαβ(ω) gives access to ZPSF,
as discussed in Sec. 2.6.5. Here, we focus on the transversal fluctuations since the longitu-
dinal ones are found to be one order of magnitude smaller for the systems investigated so
far [42]. The amplitude of the transversal ZPSF ξ2

⊥ is related to the transversal magnetic
susceptibility χ⊥(ω) = χxx(ω) + χyy(ω) via:

ξ2
⊥ = − 1

π

∫ +∞

0

dω Imχ⊥(ω) . (4.41)

This relation, as discussed in Sec. 2.6.5, demonstrates that electron hole excitations, MAE
and other mechanisms and interactions among different degrees of freedom will shape the
magnitude and the behavior of the ZPSF. We consider the same setup as in Sec. 4.3.1
and focus on the ZPSF of 3d and 4d elements in Bi2Te3 and Bi2Se3. In Fig. 4.20a, we
compare the mean value of the transverse ZPSF ξ⊥ =

√
ξ2
⊥ to the spin moments. The

ZPSF are rather large, reaching ξ⊥ ∼ 2.4µB for Cr in Bi2Te3, while the smallest value
is obtained for Mn in Bi2Se3 where ξ⊥ ∼ 0.5µB. We also notice that for Cr and Co
ξ⊥ ∼ 2Ms

3 and ξ⊥ ∼ Ms
2 for Fe. As observed in Ref. [42], the fluctuations follow the same

trend than the spin moments with a maximum at half band filling. Mn impurities in both
hosts are the only exceptions with a clear decrease of the ZPSF. Using the LLG model
(Sec. 2.6.4, Ref. [42]), it was found that ξ⊥

Ms
∼ 1√

Ms
: Although the fluctuations increase

with the magnetic moment, their relative value decreases. This means that the larger the
moment is, the closer it is to a classical behavior. Moreover, a reduction of the electron-
hole excitations due to a decrease of the resonance width leads to smaller fluctuations.
These two conditions (larger moment and small width) are fulfilled for Mn in Bi2Se3. As
discussed in Sec. 4.7.5, the lifetime of the spin excitations and the amount of electron-hole
excitations are shaped by the existence of in-gap states and their intensity at εF. Mn in
Bi2Se3 is the only element with no in-gap state close to εF, leading to the lowest amount
of electron-hole excitations and a lifetime of the excitations reaching microseconds, as
shown in Fig. 4.18.

The ZPSF for 4d elements in Bi2Te3 are depicted in Fig. 4.20b. The highest amount
of ZPSF is obtained for Tc with ξ⊥ ∼ 1.9µB. For Nb the ZPSF are larger than Ms, while
for Mo and Tc, ξ⊥ > Ms

2 . Fig. 4.20b shows the ZPSF for 4d elements in Bi2Se3 as well.
Once more the Tc impurity displays the largest amount of fluctuations with ξ⊥ ∼ 1.6µB;
lower values are observed for Ru and Pd with ξ⊥ ∼ 0.3µB and ξ⊥ ∼ 0.5µB, respectively.
Furthermore, we notice that for the 4d elements ξ⊥ ∝

√
Ms and that the spin-fluctuations
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Figure 4.20: Mean value of the transversal ZPSF ξ⊥ and spin moment Ms of (a) 3d and (b) 4d im-
purities embedded in Bi2Te3 and Bi2Se3. The transversal ZPSF are of the same order of magnitude
as Ms. The ratio between ξ⊥ and Ms is larger for the 4d elements compared to the 3d ones.
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Element M s(µB) ξ⊥ KSusc Ksf
KSusc−Ksf
KSusc

Cr (Bi2Te3) 3.844 2.442 0.959 0.316 67%
Cr (Bi2Se3) 3.671 2.315 0.088 0.029 66%
Mn (Bi2Te3) 4.412 2.245 -0.201 -0.098 51%
Mn (Bi2Se3) 4.421 0.453 0.005 0.005 3%
Fe (Bi2Te3) 3.395 1.706 4.302 2.137 50%
Fe (Bi2Se3) 3.482 1.859 6.018 2.739 54%
Co (Bi2Te3) 2.109 1.436 -6.725 -1.872 72%
Co (Bi2Se3) 2.231 1.354 -5.894 -2.143 63%

Table 4.13: Comparison between the MAE obtained from the static magnetic susceptibility with
and without including the contributions of the ZPSF for 3d elements embedded in Bi2Te3 and in
Bi2Se3. The MAE of Co is the most affected with a reduction of ∼ 4.8 meV.

to magnetization ratio ( ξ⊥Ms
) is larger in comparison with the 3d elements. Similar results

were obtained for 3d and 4d adatoms on Ag(100) in Ref. [42]. The presence of such large
ZPSF — in the order of magnitude of the spin moments — are capable of altering their
properties such as the MAE. This is addressed in the next section.

4.7.7 Renormalization of the MAE from the ZPSF
Here, we focus on the impact of the ZPSF on the magnetic anisotropy of the impurities.
Since the ZPSF make the spin moment deviate from its equilibrium orientation (easy axis),
they cause a reduction of the MAE. The renormalized value of the MAE Ksf was derived
in Sec. 2.6.6 within the spin fluctuation theory of Moriya and reads:

Ksf = KSusc

(
1− 3ξ2

⊥
M2

s + 2ξ2
⊥

)
. (4.42)

We use the MAE KSusc extracted from the magnetic susceptibility that is also used to
compute the fluctuations. Depending on the values of ξ⊥ and Ms, the MAE can be con-
siderably altered by the ZPSF. We show, in Table 4.13, a comparison between the MAE
obtained with and without the ZPSF contribution for 3d impurities embedded in Bi2Te3

and Bi2Se3. For the Bi2Te3 case, the large amount of ZPSF affects considerably the MAE
of Cr, Mn and Fe, despite the large values of their spin moments. The MAE of Co is the
most affected one, with a reduction of ∼ 4.8 meV (72%) due to the large ZPSF combined
with a relatively small spin moment (the smallest spin moment for the considered 3d ele-
ments). For the Bi2Se3 case, the MAE of Cr is small but still affected by the fluctuations.
The MAE of Mn is very weak and is unaffected since the ZPSF are one order of magnitude
smaller than the spin moment. The MAE of Fe and Co is considerably affected, with a
reduction of ∼ 3.5 meV.

Finally, we investigated the impact of the ZPSF on the MAE of 4d elements embedded
in Bi2Te3 and Bi2Se3. The obtained results are shown in Table 4.14. In the Bi2Te3 host,
the most affected element is Nb, where the MAE switches sign due to large fluctuations
and a rather small magnetic moment Ms = 1.1 µB. The MAE of Tc and Mo is small,
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Element M s(µB) ξ⊥ KSusc Ksf
KSusc−Ksf
KSusc

Nb (Bi2Te3) 1.097 1.395 4.090 -0.595 114%
Mo (Bi2Te3) 2.678 1.557 0.417 0.165 60%
Tc (Bi2Te3) 2.493 1.858 0.353 0.074 78%
Tc (Bi2Se3) 2.534 1.581 3.847 1.322 65%
Ru (Bi2Se3) 0.564 0.296 -8.189 -3.827 53%
Pd (Bi2Se3) 0.578 0.468 -0.431 -0.064 85%

Table 4.14: Comparison between the MAE obtained from the static magnetic susceptibility with and
without including the contributions of the ZPSF for 4d elements embedded in Bi2Te3 and Bi2Se3.
The MAE of Nb is the most affected with a reduction of ∼ 4.7 meV due to ZPSF larger than the
spin moment.

while their spin moment is twice the value obtained for Nb, resulting in a MAE that is less
affected by the ZPSF. For the Bi2Se3 case, the reduction of the MAE for Tc is∼ 2.5 meV;
Ru has a small spin moment and ξ⊥ ∼ Ms

2 . Due to its large MAE, any small change in
the quantity between parenthesis in Eq. (4.42) results in a considerable reduction of Ksf.
Thus, for Ru the MAE diminishes by ∼ 4.3 meV. Pd has also a small spin moment, with a
weak MAE that is considerably altered by the ZPSF and ξ⊥ ∼ 3Ms

4 .
In Ref. [42], Azpiroz et al. calculated the renormalization of the MAE of 3d and 4d

adatoms deposited on Cu(111) and Ag(001) surfaces due to ZPSF. They found that the
fluctuations could change the direction of the easy axis (i.e. the sign of the MAE) in some
cases, such as Co and Ru impurities deposited on a Cu(111) surface. The MAE for other
elements like Fe, Mo and Tc was also reduced considerably. From our results, we find that
there is a drastic impact on the MAE as well. The most altered element by the ZPSF is the
Nb impurity embedded in Bi2Te3 for which the sign of the MAE also changes. Clearly,
on the investigated topological insulators, the magnetic moments are more stable than the
ones so far investigated on metals. However, the presence of in-gap states leads to higher
fluctuations, which may destabilize the magnetic moments. Using the argument given in
Ref. [81, 16] stating that a gap opening occurs when the magnetic moment points along
the z-direction, we find that Co (Ksf < 0) is the most susceptible element to create a gap
in Bi2Te3, while in the Bi2Se3 case, both Co and Ru would create a gap. However, these
elements lead to an in-gap state filling locally the band gap.

4.8 Summary and outlook

In this chapter, we employed the KKR Green function method in real space to investigate
3d and 4d impurities embedded at a Bi site in Bi2Te3 and Bi2Se3 thin films and bulk. For
both hosts, we found that the considered 3d impurities (Cr, Mn, Fe and Co) are all donors
of electrons. For the 4d impurities which are more sensitive to their surroundings, we con-
sidered the following elements: Nb, Mo, Tc, Ru, Rh and Pd. All these impurities donate
electrons as well. In the Bi2Se3 thin film, only Rh was found to be paramagnetic, while in
the Bi2Te3 host, Ru and Pd are also paramagnetic. The electronic structure of some 3d and
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4d elements displayed in-gap states in the bulk band gap. They appear when the d peak is
close to the bulk band edge. We showed from first principles and using a simple Anderson
model that they arise solely from the hybridization with the bulk bands. Furthermore, we
investigated the MAE for all the considered impurities. We demonstrated that for elements
with a high occupation at the Fermi energy, such as Fe or Co, the magnetic force theorem
breaks down. Reliable values of the MAE can only be obtained near self-consistency using
linear response, for example.

We then computed the magnetic excitation spectra for the 3d and 4d adatoms. They
display sharper resonances compared to the case where the same elements are embedded
in a metallic environment. This is due to a lower hybridization and damping, resulting
in higher lifetimes for the spin excitations (such as Mn for example). In addition to the
damping, we also studied the nutation of the magnetization due to inertial effects. We
showed that this contribution is important for some elements, such as Nb in Bi2Te3, where
it leads to a noticeable shift in the resonance frequency. Finally, the magnetic susceptibility
was used to compute the transversal ZPSF, which were found to be highly important. They
can reach the same order of magnitude as the spin moments. We also found that such
important ZPSF cause a reduction of the MAE — they can even lead to a sign change of
the MAE for a Nb impurity in Bi2Te3.

The results set fourth in this chapter show that the magnetic doping of topological
insulators results in a plethora of interesting effects. However, several aspects are left
to be uncovered, such as the magnetic properties and dynamics of magnetic nanoclusters
or full magnetic layers deposited on topological insulators. Furthermore, the dynamical
magnetic susceptibility can be used to compute the electron-magnon self energies and
provide access to the ISTS spectrum.
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Chapter 5
Magnetic Skyrmions

Skyrmions were introduced in nuclear physics by Tony Skyrme [213]. They are topolog-
ically protected particle-like solutions for a system of interacting pions. In magnetism,
Skyrmions are particle-like swirling chiral spin textures [68], which can be stabilized by
the spin-orbit interaction. They are topologically protected because they cannot be contin-
uously transformed to a different magnetic state (for example a ferromagnet). Recently,
they raised a lot of interest due to their potential usage in spintronics [214, 69]. Mag-
netic Skyrmions and the topological surface states of a topological insulator discussed in
the previous chapter are not foreign to each other, in the sense that both are topologically
protected. This protection for topological surface states is reflected in an integer Chern
number as discussed previously. Analogously, the topological protection in magnetic
Skyrmions results in an integer topological charge or winding number. From the tech-
nological perspective, the ideal Skyrmions carrying spin information in a device should be
individual Skyrmions (not a lattice of Skyrmions) with sub-10 nm size [69]. We address
in this chapter the electronic structure of small magnetic Skyrmions (sizes < 3 nm) with
the goal of understanding their fundamental electronic and magnetic properties in order to
find new ways of detecting them by electrical or optical means.

This chapter is structured as follows: First, we introduce the basic notions about mag-
netic Skyrmions such as the topological charge or winding number. Second, we present
simulations from first principles calculations of magnetic Skyrmions in a thin film consti-
tuted of a magnetic bilayer (Pd/Fe) deposited on the Ir(111) surface which is a heavy metal
substrate with a strong spin-orbit interaction. Third, we establish the concept of tunneling
spin-mixing magnetoresistance (TXMR) observed in the density of states of the Fe layer
from first principles calculations and from the model perspective. We propose to use the
TXMR effect for the all-electrical detection of Skyrmions in devices. Then, we discuss
the presence of a chiral orbital magnetization (COM), which develops into a topological
orbital magnetization (TOM) in large magnetic Skyrmions in Pd/Fe/Ir(111). The COM
was already discussed in Sec. 3.9.6 in the context of magnetic nanostructures with a chiral
spin texture. Finally, we establish a connection between the topological charge and the
TOM in the limit of slowly varying magnetic textures.
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The results on the TXMR presented in this chapter were published in Ref. [215]. Our
main contribution to the paper consisted in uncovering the TXMR mechanism using mul-
tiple scattering theory and the Alexander-Anderson model. Part of the results on the chiral
orbital magnetization were also published in Ref. [67]. In this paper, we performed the
ab initio calculations for the density of states calculations which allowed a mapping into
the tight-binding model used to compute the COM’s. Moreover, we uncovered the COM’s
from first-principles calculations on realistic sub-5 nm Skyrmions.

5.1 Introduction to magnetic Skyrmions
Magnetic Skyrmions are observed in a wide variety of magnetic materials in bulk [70,
71, 216] and on surfaces (thin films) [72, 217]. An example of such a spin texture is
depicted in Fig. 5.1, where the spin magnetic moments rotate smoothly from the Skyrmion
core to point in the opposite direction at the edges. Skyrmions have been extensively
investigated due to their possible use in the field of spintronics [214]. The current densities
needed to move them are orders of magnitude smaller compared to conventional domain
walls [75, 76]. Another appealing aspect of magnetic Skyrmions is their robustness against
external perturbations thanks to their topological protection [218, 219]. A measure of
the topological character of a magnetic Skyrmion is the so-called topological charge or
winding number, which measures the number of times the magnetization rotates when the
magnetic moments of the Skyrmion are mapped onto a sphere [220]:

Q =
1

4π

∫
d~r ~eM ·

(
∂~eM
∂x
× ∂~eM

∂y

)
. (5.1)

~eM is a unit vector which points in direction of the spin magnetic moment ~M , and the
integral is performed over the area containing the Skyrmion. For magnetic Skyrmions Q
is an integer number. More precisely, for the chiral Skyrmions shown in Fig. 5.1 where
the ferromagnetic background is anti-parallel to the z-axis, Q = 1. The integrand in
Eq. (5.1) represents the emergent field induced by the spin texture [220]. Due to this
emergent field, when electrons flow through a Skyrmionic spin texture, they experience a
topological Hall effect which deflects the electrons generating a transverse current [77].
The key ingredient for the stabilization of the chiral Skyrmions shown in Fig. 5.1 is the
Dzyaloshinskii-Moriya (DM) interaction [51, 50, 58] discussed in detail in chapter 3. It
arises in magnets with inversion symmetry breaking and in the presence of the spin-orbit
interaction (SOI), for example in magnetic thin layers on top of heavy metals. The DM
interaction favors non-collinear spin textures as seen in Eq. (3.42) and dictates the direction
of rotation of the magnetic moments. The competition of the DM interaction, the isotropic
exchange (first term in Eq. (3.42)) and external magnetic fields or magnetic anisotropy
leads to the formation of magnetic Skyrmions.

One of the first experimental observations of magnetic Skyrmions in thin films on
heavy metal substrates was done in Ref. [72] using spin-polarized STM (SP-STM) com-
bined with first principles calculations for an Fe layer deposited on Ir(111) surface. How-
ever, Fe/Ir(111) is not an appealing system since it is challenging to change its rather stable
topological state, which is the ground state [217]. In order to have individual Skyrmions,
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one can add a monolayer of Pd on Fe/Ir(111) so as to change the ground state to a spin
spiral state. When a magnetic field of ∼ 1 Tesla is applied a Skyrmion lattice is stabi-
lized [73]. For higher field intensities, a phase with isolated sub-5 nm Skyrmions can be
obtained [217].

5.2 Magnetic Skyrmions in Pd/Fe/Ir(111)
Here, we address the previously mentioned appealing case of a Pd layer deposited on a
monolayer of Fe which is grown on an Ir(111) surface [215] considering an fcc-stacking.
The presence of a heavy substrate such as Ir provides a strong SOI, which combined with
the breaking of inversion symmetry at the interface gives rise to a non-vanishing DM inter-
action within the Fe layer [51, 50]. The competition between the ferromagnetic isotropic
exchange interaction J and the DM interaction D determines the size and the chirality of
the Skyrmion. For a certain range of applied magnetic field strengths, it has been experi-
mentally shown that for Pd/Fe/Ir(111), Skyrmions with a diameter Dsky ≈ 1 − 5 nm can
be stabilized [221].

To model this system from first principles, we used the relativistic Korringa-Kohn-
Rostoker Green function method with a full-potential treatment [96]. With this approach
we can embed a Skyrmion, considered as a defect, into a ferromagnetic host. The mag-
netic Skyrmions, were modeled in the following way: first a self consistent calculation of
the periodic ferromagnetic Pd/Fe/Ir(111) host system was performed. Afterwards, a real
space cluster is created, in which the spin moment of a single Fe atom is reversed with re-
spect to the ferromagnetic background. Using the embedding technique then the magnetic
moments in a certain area (depending on the size of the Skyrmion) are allowed to relax,
whilst the rest are kept fixed. The Skyrmion profile is obtained self-consistently, and the
contribution of the ferromagnetic background is included by the host Green function.

Three different Skyrmions sizes were considered [215]: Skyrmions containing 19, 37
and 71 Fe atoms. The Skyrmion spin structures obtained self-consistently are shown in
Fig. 5.1. For all the three different sizes, the spin moment rotates form the core to edges
while its amplitude remains constantM ' 2.7µB. The Skyrmion profiles (cut in the radial
direction) show that the rotation angles between two magnetic moments dθij strongly
depends on the Skyrmion size. Nevertheless, the non-collinearity is always higher near
the Skyrmion core for the sizes considered, and this leads to a lot of interesting features in
the electronic structure, some of which will be described in the next sections.

5.3 Tunneling spin-mixing magnetoresistance
The detection of magnetic Skyrmions is paramount for any potential application, specially
in the of case of Skyrmions at the nano-scale, such as the ones present in Pd/Fe/Ir (111).
Hence, a method with high spatial resolution, such as the Scanning Tunneling Microscopy
(STM) would be ideal. Using a spin-polarized tip to detect non-collinear spin textures is
possible [72]. However, the technology involving the manufacturing and use of a spin-
polarized electrode is not necessarily straightforward. In this section, we describe the
detection of non-collinear spin structures such as Skyrmions using a non-magnetic tip.
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vacuum depends on the noncollinear magnetic state-of-phase
below. Suspended metal contacts are possible with state-of-the-art
fabrication techniques41, but one could also imagine tunnelling
through a weakly interacting two-dimensional insulator, such as
hexagonal boron nitride (hBN) or molybdenum disulfide (MoS2).
Such a process can be intimately understood in a nonspin-
polarized scanning tunnelling microscopy (STM) experiment
(Fig. 1b).

In this study, we consider two magnetic thin-film hetero-
structures similar to Fig. 1b purely from ab initio: fcc overlayers
of Pd/Fe and Pd/Pd/Fe on single crystal bulk fcc-Ir(111). These
systems are attractive for a number of reasons. First, they generate
large Dzyaloshinskii–Moriya interactions (DMIs)42–44, whose
competition with the isotropic exchange interaction J determines
the size and chirality of the skyrmions8. DMIs are large here
because of the strength and nature of the inversion symmetry
breaking in the heterostructures. At the Fe/Ir(111) interface, a
large SOI in the underlying heavy metal substrate, here Ir(111), is
relatively uncompensated by the overlayer Pd/Fe or Pd/Pd/Fe
interface, leading to a large DMI vector preferentially in the plane
of Fe, denoted by D. The ratio of |D|/J, along with an external
magnetic field, can stabilize isolated skyrmions with diameter
DSkE1–5 nm in size, and has been shown experimentally23,26.
Second, by choosing a double-Pd overlayer (Pd/Pd/Fe/Ir) versus a
single-Pd overlayer (Pd/Fe/Ir), one can alter the exchange
interactions in Fe due to the modified nature of the interface
hybridization and electronic charge transfer (Supplementary Note
1 and Supplementary Tables 1 and 2). We investigate this effect to
illuminate conceptual studies where other overlayer combinations
and materials are used to engineer the size, shape and stability of
the isolated skyrmions27,39,40.

We focus specifically on single skyrmions and do not
investigate networks or lattices of skyrmions. We perform self-
consistent density functional theory (DFT) calculations based on

a full-potential Green function formalism including SOI45, which
allows a perfect embedding of real-space defects, such as isolated
skyrmions, into the ferromagnetic background system. Additional
specifics of our computational scheme are given in the Methods
section.

Noncollinear inhomogeneity in nanoskyrmions. Before coming
to the essential physics of the TXMR effect, we first self-consistently
relax different sized nanoskyrmions in otherwise ferromagnetic
backgrounds (Fig. 2), in both single- and double-Pd overlayer
material stacks. We control the size of the skyrmionic defects by
allowing different finite numbers of atoms to relax their magnetic
moments in size and direction after the central atom has been spin
flipped as an initial condition. We investigate three different realistic
skyrmion sizes: DSkE1.7, 2.2, and 2.7 nm in diameter. The spin
textures exhibit a fixed and unique rotational sense as demanded by
the DMI, which seeks energy gain by torquing the moments to
rotate with respect to their neighbours. These structures are
cycloidal and radial in nature as expected for magnetic thin films.
Thus our theoretical calculations are consistent in generating rea-
listic nanoskyrmions which have been experimentally detected
using magnetic spin-polarized currents23,26.

We illustrate the spin-moment global rotation versus the
vertical (polar angle y) of each atom and the pairwise difference
between adjacent polar angles (dy). We will show that the spin-
mixing perturbations to the local-density-of-states (LDOS) are a
function of these angular parameters because the relative canting
between different pairwise atomic sites varies as a function of
space, in addition to the absolute canting relative to the substrate.
While traversing across the diameter of any of the nanoscopic
skyrmions shown in Fig. 2, we mention that dy itself is not
constant between different nearest neighbour atom pairs, such
that there exists an inhomogeneity on the atomic scale in the

DSk≈1.7 nm DSk≈2.2 nm DSk≈2.7 nm
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Figure 2 | Real-space relaxation of nanoskyrmions with increasing size. (a–c) Plots of axisymmetric cycloidal spin whirls inside a magnetically active
Fe-layer centred about increasingly larger skyrmionic defects in fcc-Pd/Fe overlayer on fcc-Ir(111) bulk substrate. Confining spins in the FM background are
shown transparent. We define y as the typical polar angle with the vertical and dy as the difference in polar angle between adjacent pairwise atoms.
(d–f) Again but in fcc-Pd/Pd/Fe overlayer on fcc-Ir(111) bulk substrate. The colour bar in a represents the magnitude of the z-component of the
magnetization for each spin in a–f.
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vacuum depends on the noncollinear magnetic state-of-phase
below. Suspended metal contacts are possible with state-of-the-art
fabrication techniques41, but one could also imagine tunnelling
through a weakly interacting two-dimensional insulator, such as
hexagonal boron nitride (hBN) or molybdenum disulfide (MoS2).
Such a process can be intimately understood in a nonspin-
polarized scanning tunnelling microscopy (STM) experiment
(Fig. 1b).

In this study, we consider two magnetic thin-film hetero-
structures similar to Fig. 1b purely from ab initio: fcc overlayers
of Pd/Fe and Pd/Pd/Fe on single crystal bulk fcc-Ir(111). These
systems are attractive for a number of reasons. First, they generate
large Dzyaloshinskii–Moriya interactions (DMIs)42–44, whose
competition with the isotropic exchange interaction J determines
the size and chirality of the skyrmions8. DMIs are large here
because of the strength and nature of the inversion symmetry
breaking in the heterostructures. At the Fe/Ir(111) interface, a
large SOI in the underlying heavy metal substrate, here Ir(111), is
relatively uncompensated by the overlayer Pd/Fe or Pd/Pd/Fe
interface, leading to a large DMI vector preferentially in the plane
of Fe, denoted by D. The ratio of |D|/J, along with an external
magnetic field, can stabilize isolated skyrmions with diameter
DSkE1–5 nm in size, and has been shown experimentally23,26.
Second, by choosing a double-Pd overlayer (Pd/Pd/Fe/Ir) versus a
single-Pd overlayer (Pd/Fe/Ir), one can alter the exchange
interactions in Fe due to the modified nature of the interface
hybridization and electronic charge transfer (Supplementary Note
1 and Supplementary Tables 1 and 2). We investigate this effect to
illuminate conceptual studies where other overlayer combinations
and materials are used to engineer the size, shape and stability of
the isolated skyrmions27,39,40.

We focus specifically on single skyrmions and do not
investigate networks or lattices of skyrmions. We perform self-
consistent density functional theory (DFT) calculations based on

a full-potential Green function formalism including SOI45, which
allows a perfect embedding of real-space defects, such as isolated
skyrmions, into the ferromagnetic background system. Additional
specifics of our computational scheme are given in the Methods
section.

Noncollinear inhomogeneity in nanoskyrmions. Before coming
to the essential physics of the TXMR effect, we first self-consistently
relax different sized nanoskyrmions in otherwise ferromagnetic
backgrounds (Fig. 2), in both single- and double-Pd overlayer
material stacks. We control the size of the skyrmionic defects by
allowing different finite numbers of atoms to relax their magnetic
moments in size and direction after the central atom has been spin
flipped as an initial condition. We investigate three different realistic
skyrmion sizes: DSkE1.7, 2.2, and 2.7 nm in diameter. The spin
textures exhibit a fixed and unique rotational sense as demanded by
the DMI, which seeks energy gain by torquing the moments to
rotate with respect to their neighbours. These structures are
cycloidal and radial in nature as expected for magnetic thin films.
Thus our theoretical calculations are consistent in generating rea-
listic nanoskyrmions which have been experimentally detected
using magnetic spin-polarized currents23,26.

We illustrate the spin-moment global rotation versus the
vertical (polar angle y) of each atom and the pairwise difference
between adjacent polar angles (dy). We will show that the spin-
mixing perturbations to the local-density-of-states (LDOS) are a
function of these angular parameters because the relative canting
between different pairwise atomic sites varies as a function of
space, in addition to the absolute canting relative to the substrate.
While traversing across the diameter of any of the nanoscopic
skyrmions shown in Fig. 2, we mention that dy itself is not
constant between different nearest neighbour atom pairs, such
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vacuum depends on the noncollinear magnetic state-of-phase
below. Suspended metal contacts are possible with state-of-the-art
fabrication techniques41, but one could also imagine tunnelling
through a weakly interacting two-dimensional insulator, such as
hexagonal boron nitride (hBN) or molybdenum disulfide (MoS2).
Such a process can be intimately understood in a nonspin-
polarized scanning tunnelling microscopy (STM) experiment
(Fig. 1b).

In this study, we consider two magnetic thin-film hetero-
structures similar to Fig. 1b purely from ab initio: fcc overlayers
of Pd/Fe and Pd/Pd/Fe on single crystal bulk fcc-Ir(111). These
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large Dzyaloshinskii–Moriya interactions (DMIs)42–44, whose
competition with the isotropic exchange interaction J determines
the size and chirality of the skyrmions8. DMIs are large here
because of the strength and nature of the inversion symmetry
breaking in the heterostructures. At the Fe/Ir(111) interface, a
large SOI in the underlying heavy metal substrate, here Ir(111), is
relatively uncompensated by the overlayer Pd/Fe or Pd/Pd/Fe
interface, leading to a large DMI vector preferentially in the plane
of Fe, denoted by D. The ratio of |D|/J, along with an external
magnetic field, can stabilize isolated skyrmions with diameter
DSkE1–5 nm in size, and has been shown experimentally23,26.
Second, by choosing a double-Pd overlayer (Pd/Pd/Fe/Ir) versus a
single-Pd overlayer (Pd/Fe/Ir), one can alter the exchange
interactions in Fe due to the modified nature of the interface
hybridization and electronic charge transfer (Supplementary Note
1 and Supplementary Tables 1 and 2). We investigate this effect to
illuminate conceptual studies where other overlayer combinations
and materials are used to engineer the size, shape and stability of
the isolated skyrmions27,39,40.

We focus specifically on single skyrmions and do not
investigate networks or lattices of skyrmions. We perform self-
consistent density functional theory (DFT) calculations based on

a full-potential Green function formalism including SOI45, which
allows a perfect embedding of real-space defects, such as isolated
skyrmions, into the ferromagnetic background system. Additional
specifics of our computational scheme are given in the Methods
section.

Noncollinear inhomogeneity in nanoskyrmions. Before coming
to the essential physics of the TXMR effect, we first self-consistently
relax different sized nanoskyrmions in otherwise ferromagnetic
backgrounds (Fig. 2), in both single- and double-Pd overlayer
material stacks. We control the size of the skyrmionic defects by
allowing different finite numbers of atoms to relax their magnetic
moments in size and direction after the central atom has been spin
flipped as an initial condition. We investigate three different realistic
skyrmion sizes: DSkE1.7, 2.2, and 2.7 nm in diameter. The spin
textures exhibit a fixed and unique rotational sense as demanded by
the DMI, which seeks energy gain by torquing the moments to
rotate with respect to their neighbours. These structures are
cycloidal and radial in nature as expected for magnetic thin films.
Thus our theoretical calculations are consistent in generating rea-
listic nanoskyrmions which have been experimentally detected
using magnetic spin-polarized currents23,26.
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mixing perturbations to the local-density-of-states (LDOS) are a
function of these angular parameters because the relative canting
between different pairwise atomic sites varies as a function of
space, in addition to the absolute canting relative to the substrate.
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Figure 5.1: Spin texture of magnetic Skyrmions of different sizes, containing: a) 19 Fe atoms, b)
37 Fe atoms and c) 71 Fe atoms from Fe layer of Pd/Fe/Ir(111). The spin moments rotate smoothly
from the center to the edges to point in the opposite direction. The light blue cones represent the
ferromagnetic background in which the Skyrmion is embedded. The magnetic moments induced in
the surrounding Pd and Ir atoms are not shown. This figure was taken from Ref. [215].

In other words, we propose to use an all-electrical detection scheme, which in principle
is not limited to electrodes used in STM. This is achieved by using the tunneling spin-
mixing magnetoresistance (TXMR), which we recently discovered [215]. This effect was
also observed experimentally [222].

In the Tersoff-Hamann model [223], the differential conductance dI
dV is related to the

local density of states (LDOS) of the surface via:

dI

dV
∝ nS(~rtip, εF + eV )nT , (5.2)

where nS(~rtip, εF + eV ) is the LDOS of the surface at the position of the tip, ~rtip, and
at an energy εF + eV , where εF is the Fermi energy, when using a bias voltage V . The
tip is considered as a geometrical point within this model and its LDOS nT is a constant.
Due to the large SOI in the Ir substrate, the orientation of the spin moment has an influ-
ence on the LDOS. We found that other mechanisms such as non-collinear magnetism can
have an impact on the LDOS. Thus, we distinguish in the following two different possible
mechanisms:

The first mechanism consists of the so-called tunneling anisotropic magnetoresistance
(TAMR), where the LDOS depends on the polar angle θi between the spin magnetic mo-
ment ~Mi and the z-axis which is perpendicular to the surface. TAMR was discussed for
Fe thin films on W(110) in Ref. [224], where they measured different scanning tunnel-
ing spectroscopy (STS) signals with a nonmagnetic tip for magnetic domains and domain
walls, in which the spin structures rotate continuously into the opposite direction com-
pared to the previous magnetic domain. TAMR is an effect induced by a spin rotation with
respect to the z-axis in presence of the SOI, similarly to the anisotropic magnetoresistance
discussed in Sec. 3.8.6.

In the second mechanism a mixing between the majority and minority spin channels
occurs due to the non-collinearity among the magnetic moments. This effect depends then
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on the relative angle dθij = θi − θj between different magnetic moments ~Mi and ~Mj . It
can be present even in absence of the SOI. This mechanism can be used as a local probe
for the magnetization in complex magnetic textures such as Skyrmions since it relates the
LDOS to dθij . In some cases it is possible to separate the contributions of the TAMR and
the contribution due to the non-collinearity to the STS signal. As an example, we consider
a homogeneous spin spiral, the angle between each magnetic moment ~Mi and its neighbors
~Mj is always the same dθij = dθ, thus, the non-collinearity contribution is the same for

all the atoms contained in the spin spiral, while, the TAMR depends on the direction of
each magnetic moment ~Mi with respect to the surface normal and leads to a different STS
signal. Both the TAMR and the non-collinear (NC) contribution can subsumed as TXMR.

The TXMR is linked to the LDOS of the substrate. We show in Fig. 5.2a the LDOS
for the minority (full lines) and majority spin channels (dashed lines) of the Fe atoms
(constituting the Skyrmion shown in Fig. 5.1b). Note that the majority and minority spin
channels are defined according to the local spin frame of reference for every Fe atom.
Fig 5.2a shows the LDOS for different Fe atoms, labeled from (0-3) depending on their
location with respect to the Skyrmion core (see Fig. 5.2c), as well as the LDOS on the
ferromagnetic (FM) background, i.e. away from the Skyrmion (see Fig. 5.2c). The res-
onant states located between 0.5 − 1.0 eV above εF represent the minority spin d-band
of the Fe atoms, where we can clearly see an increase of the splitting of the 3d-peaks
when moving from the central Fe atom (Fe 0) antiferromagnetically coupled to its nearest
neighbors towards the Skyrmion edges (Fe 3) coupled rather ferromagnetically as shown
in Fig. 5.2c. The splitting between the two peaks is around 0.8 eV in the ferromagnetic
background and changes as a function of the site (angle), which leads to the TXMR effect.
Similar splittings are observed in majority d-band of the Fe atoms located at −1.0 eV, but
the effect is smaller compared to the minority spin channel.

The d-peaks in the minority spin channel of the Fe layer hybridize with the sp-states
present in the Pd layer. The dz2 component from the Fe hybridizes the most and leads
to Fe-Pd-spdz2 hybrid states, which we call Pd-dz2 states. They are localized in the Pd
layer with a resonance around ε ∼ 0.4 eV as shown in Fig. 5.2b. This Pd-dz2 states of the
surface Pd layer have the adequate orbital symmetry to decay into the vacuum and affect
considerably the LDOS as displayed in Fig. 5.2b. The vacuum LDOS can be measured
experimentally using all-electrical STS measurements. Furthermore, the splittings of the
resonances of the LDOS as a function of the magnetic moments orientation propagate to
the vacuum. The TXMR is measured in the vacuum layer and it can be defined at each site
~r as:

TXMR(~r) =
LDOSvac

FM(~r)− LDOSvac
Sky(~r)

LDOSvac
FM(~r)

× 100% . (5.3)

LDOSvac
FM is the LDOS in the vacuum above the ferromagnetic background away from the

Skyrmion, while LDOSvac
Sky(~r) is the LDOS in the vacuum above a site located at position

~r. In an STS measurement, one can select an energy window for which the TXMR is large.
We show in Ref. [215] that for ε ∼ 0.5 eV above εF, TXMR can reach 40% when the SOI
is turned off and decreases to 20% in presence of the SOI. In other words, SOI can reduce
the efficiency of the effect.

To understand the occurrence of these splittings within the LDOS of the Fe atoms
and their relation to the non-collinearity of the magnetic moments and to the presence
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of the SOI, we derive in the following an analytical expression connecting the LDOS to
the opening angles between to magnetic moments dθij using multiple scattering theory.
We then address the energy-dependence of these splittings using the Alexander-Anderson
model [225] generalized to include non-collinear magnetism.
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Figure 5.2: a) LDOS for the minority spin channel (full lines) and majority spin channel (dashed
lines) of Fe atoms with magnetic moments pointing in different directions along the Skyrmion radius
(see Fig. 5.1b). There is an increase of the splitting of the 3d-peaks when moving from Fe-0 towards
Fe-3. b) The change of the LDOS of the Fe atoms leads to a change in the LDOS of the vacuum
layer through the hybridization with the Pd states. The dark dashed line represents the Pd-dz2 state
in the ferromagnetic configuration. c) On the left side view of the Pd/Fe/Ir(111) slab displaying
the Skyrmion profiles and indicating the labeling of the Fe atoms from the center to the edges. On
the right side we show the Pd/Fe/Ir(111) slab in the ferromagnetic configuration. The temperature
broadening used here is smaller than the one used in Ref. [215].

5.3.1 TXMR from multiple scattering theory

We now use multiple scattering theory (see Sec. 2.4) to derive analytically the angular
dependence of the TXMR according to the orientation of the magnetic moments [215].
We must compute the change in the LDOS, ∆n(~r, ε), at a position, ~r, due to a change in
the magnetic moment orientation. ∆n(~r, ε) can be decomposed into two contributions:
the first one is due to the TAMR induced by the SOI and the second contribution is caused
by the non-collinearity among the spin magnetic moments. The angular dependence of
∆n(~r, ε) due to the SOI is already known in the literature [224, 226, 227] and it can be
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written as:
∆n(~ri, ε) = N(~ri, ε) sin2 θi , (5.4)

where N(ri, ε) is a function that depends on the site position, ~ri, and the energy ε. θi is
the polar angle of the spin magnetic moment ~Mi at site i. Eq. (5.4) shows that the TAMR
effect is proportional to sin2 θi reminiscent of the magnetocrystalline anisotropy shown in
Eq. (2.86). On the other hand, in the absence of the spin-orbit interaction ∆n(~r, ε) can be
related to the Green function via (see Sec. 2.3.1):

∆n(~ri, ε) = − 1

π
Im Tr

(
GNC
ii (ε)−GFM

ii (ε)
)

. (5.5)

GNC
ii (ε) is the Green function of the non-collinear state at site i, whileGFM

ii (ε) is the Green
of the ferromagnetic state (where the spin moments are oriented along the z-direction) at
site i. The bold symbols indicate that the Green function has the spin structure indicated
in Eq. (2.28). GNC

ii (ε) and GFM
ii (ε) are related to each other via the following Dyson

equation:
GNC
ii (ε) = GFM

ii (ε) +
∑
j

GFM
ij (ε) ∆V jG

NC
ji (ε) , (5.6)

and,

∆V i =
V ↑↑i − V ↓↓i

2
(~σ · ~eMi

− σz) . (5.7)

Assuming that the nonmagnetic part of the potential (i.e. V ↑↑i +V ↓↓i
2 ) and the length of

the magnetic part (i.e. V ↑↑i −V
↓↓
i

2 ) remain unchanged when going from the ferromagnetic
configuration to the non-collinear one, ∆V i describes the change of the potential upon
rotation of the magnetic moments. ~σ is the Pauli vector defined Sec. 2.2.2 and ~eMi

is a
unit vector pointing in the direction of ~Mi. We now perform an expansion of Eq. (5.6) into
Born series to second order in ∆V i and obtain:

GNC
ii (ε) = GFM

ii (ε) +
∑
j

GFM
ij (ε) ∆V jG

FM
ji (ε)

+
∑
jk

GFM
ij (ε) ∆V jG

FM
jk (ε) ∆V kG

FM
ki (ε) + ... .

(5.8)

By taking the trace over the spin degree of freedom and using basic properties of the Pauli
matrices σi, we can easily write:

∆n(~ri, ε) '
∑
j

Ciji1 (ε) (1− ezMi
)

+
∑
jk

Cijki2 (ε)
[
(~eMj

· ~eMk
)− (ezMj

+ ezMk
) + 1

]
+ ... .

(5.9)

Where Ciji1 (ε) and Cijki2 (ε) are coefficients of first and second order given by a trace over
the orbital component of products ofGFM

ij (ε) and ∆V i. The dot product in Eq. (5.9) shows
explicitly that TXMR depends on the relative angle between the spin moments located at
different sites j and k.
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5.3.2 TXMR in the Alexander-Anderson model
In order to understand the splitting that occurs in the 3d-peaks of the LDOS for the Fe
atoms shown in Fig. 5.2a, we consider the Alexander-Anderson model [225]. It was orig-
inally made for two atomic sites with one orbital per site and spin splitted bands, this
model allows both ferromagnetic and antiferromagnetic exchange mechanisms. We gen-
eralize the model for non-collinear systems to compute the LDOS n(~ri, ε). The magnetic
moment on one atomic site is fixed while the second one is rotating. The aim is to compare
the LDOS obtained within the model to the one computed from first principles shown in
Fig. 5.2a.

Assuming that we have two Fe atoms located at the neighboring sites i and j with
a single atomic orbital dz2 centered on each site. The effect of the SOI interaction was
already addressed in Ref. [228], thus, it is not included in the model. The hopping between
the sites i and j is taken to be tij = 0.4 eV in order to fit the splitting obtained from first
principles. Our focus is in understanding the spin-splitting observed in the minority spin
channel. Thus, we neglect in practice the contribution of the majority spin channel, which
is almost fully occupied. We consider the center of the minority spin channel located at
ε↓↓i = ε↓↓j = 0.4 eV above εF. The broadening of the states is set to η = 0.5 eV to have a
good agreement with the first principles results. First, we numerically calculateGii(ε):

Gii(ε+ iη) =

[
1

ε−H + iη

]
ii

, (5.10)

Gii(ε + iη) is the Green function at site i, where H is the tight-binding Hamiltonian of
the system, it is a matrix in spin space and atom index i. For a two sites model with
ferromagnetically coupled moments on each site i and j, it reads:

H =


ε↑↑i 0 tij 0

0 ε↓↓i 0 tij
tij 0 ε↑↑j 0

0 tij 0 ε↓↓j

 . (5.11)

H can be written in terms of site diagonal and non-diagonal blocks as:

H =

(
Hii Hij

Hji Hjj

)
. (5.12)

When considering that the spin moment at site j is rotating with an angle θj , the rotated
HamiltonianH ′ is given by:

H ′ =

(
Hii Hij

Hji H ′jj

)
with H ′jj = U jHjjU

†
j . (5.13)

Where U †j = cos
θj
2 1 + i sin

θj
2 σy rotates the spin moment at a site j with an angle θj

away from the z-axis. The LDOS on site i in presence of non-collinear magnetic moments
is given in terms ofGii(ε) as:

n(~ri, ε) = − 1

π
Im Trσ{Gii(ε)} . (5.14)
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We show in Fig. 5.3 the results obtained for n(~ri, ε) for five different orientations of the
magnetic moment at site j. We see a splitting of the d-resonance in the LDOS for the
minority spin channel while going from the antiferromagnetic (AFM) configuration to the
ferromagnetic (FM) one, where we recover the behavior of the LDOS in the Alexander-
Anderson model for FM and AFM configurations [225]. In the FM configuration the
hybridization between the dz2 orbitals of the two sites i and j, induces a splitting of the
initial orbital into two states a bonding and anti-bonding states. The energy difference
between these two states is ∼ 2 tij . For the antiferromagnetic configuration the minority
and majority spin channel resonances repel each other [109]. This leads to an additional
shift between the the two resonances given by 2 t2ij/(ε↓↓i −ε

↑↑
i ). However, the shift is expected

to be very small considering the large exchange splitting between the orbitals.
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Figure 5.3: Local density of states in the generalized Alexander-Anderson model for an Fe at site i
connected to an Fe atom at site j. The spin moment of the Fe atom at site j rotates from parallel to
z direction (FM) to the opposite direction (AFM), five different orientations where considered. We
see an apparent splitting of the single d -peak in the antiferromagnetic configuration into bonding
and anti-bonding d-peaks in the ferromagnetic configuration.

5.4 Chiral orbital magnetization
Previously, we discussed the possibility of probing the spin texture of a magnetic Skyrmion
using STM with a non-magnetic tip. The goal of this section is to address the possibility
of using X-ray magnetic circular dichroism (XMCD) as a magnetic microscopy technique
to detect Skyrmions. The XMCD sum rules [229, 208] give access to the net spin moment
(M) and to the orbital moment (M orb) individually. We will show in the following that
with XMCD one can access two types of contributions to the orbital moments: one is
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driven by the SOI and the other one is driven by the non-collinear alignments of the spin
moment. The latter one can be used to discriminate Skyrmions with opposite topological
charges (Q) [67].

In order to understand the connection between non-collinear spin textures and orbital
moments, we start from the isolated atom. The Hund’s rules dictate the value of the orbital
moments as a function of the atomic states filling. However, when an atom is introduced
to a solid, it is subjected to an electrostatic field induced by the surrounding atoms. This
field is known as the crystal field, which causes a quenching of the orbital moment. The
orbital moment can be recovered if the SOI (discussed in Sec. 2.4.5) is strong enough to
lift the orbital degeneracies.

An alternative way to lift the orbital degeneracies without the SOI is via non-collinear
magnetism [67]. This was discussed in Sec. 3.9.6 in the context of magnetic impurities
deposited on a two dimensional free electron gas. We found that, when the spin magnetic
moments have a non-vanishing scalar chirality Cijk defined by

Cijk = ~eMi
· (~eMj

× ~eMk
) , (5.15)

we observe finite bound state currents (i.e a lifting of the orbital degeneracy). We also
demonstrated within the model the relation between the induced orbital magnetization at
a point, ~r, in the electron gas, and the scalar chirality:

M orb
z (~r) ≈ F(~r) Cijk , (5.16)

where only the z-component of the orbital magnetization, M orb
z (~r), is non-zero assum-

ing that the electrons are confined in 2D. F(~r) is an oscillatory function decaying with
r (distance from the magnetic spin texture). A similar connection between the orbital
magnetization and Cijk for non-collinear magnetic systems without SOI exists. The first
observation of a finite orbital magnetization without SOI was done in Ref. [230] for a
magnetic vortex composed of Fe atoms, using first principles calculations. More recent
investigations have been performed on periodic systems, for example a Mn monolayer de-
posited on a Cu(111) surface, where the magnetic ground state is an antiferromagnetic 3Q
configuration, which displays a non-zero orbital magnetization without SOI, only relying
on the chirality of the spin texture [231]. We refer to this orbital magnetization as chiral
orbital magnetization (COM). Its connection to the scalar chirality makes the COM a lo-
cal probe for the chirality of complex magnetic spin textures such as Skyrmions. Using a
tight-binding model for magnetic Skyrmions parametrized from our first principles simu-
lations of Pd/Fe/Ir(111), we computed the COM for different Skyrmion sizes up to ∼ 8.0
nm wide and showed a clear connection between the COM and the Skyrmion emergent
field which maps the local scalar spin chirality Cijk [67].

5.4.1 Chiral orbital magnetization in Pd/Fe/Ir(111)
We now address the COM computed for magnetic Skyrmions found in Pd/Fe/Ir(111) using
the KKR Green function method (see Sec. 2.4). First, the z-component for orbital magne-
tization (M orb

z ) in the Fe layer computed in presence of the SOI is shown in Fig. 5.4a. The
orbital moment is parallel to the spin moment depicted in Fig. 5.1b. M orb

z has a maximal
amplitude at the edges or at the core of the Skyrmion, where the spin moments points
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parallel or anti-parallel to the z-axis, respectively. We consider now the same system and
turn-off the SOI, then compute the orbital magnetization. As predicted earlier [230, 67],
we find a finite orbital magnetization shown in Fig. 5.4b. The latter one emerges solely
from the non-collinearity between the spin moments (see Sec. 3.9.6). Therefore, it van-
ishes at the edges of the Skyrmion, where the magnetic moments are in a collinear config-
uration, and peaks at the Skyrmion center. The COM’s are one order of magnitude smaller
than the orbital moments obtained in presence of the SOI. The COM does not follow the
spin moment but follows the scalar chirality and is highest in the non-collinear region
(relevant part).
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Figure 5.4: Map showing the distribution of the orbital magnetization on each Fe atom represented
by a hexagon for the Skyrmion depicted in Fig. 5.1b in Pd/Fe/Ir(111). a) Orbital magnetization for
the Skyrmion in presence of SOI and b) without SOI.



Chiral orbital magnetization 169

We then analyzed the dependence of the orbital magnetization regarding the size of the
Skyrmions. We considered the three different sizes shown in Fig. 5.1 containing 19, 37
and 71 Fe atoms, respectively. First in presence of the SOI (blue curve in Fig. 5.5), there
is an increase of the orbital magnetization when the Skyrmion size increases. This can
be explained in the following way: when the number of Fe atoms increases, the system is
provided with more rather ferromagnetically aligned Fe atoms, the orbital moments then
add up because close to the edges they point in the same direction as shown in Fig. 5.4a.
Second, in absence of the SOI for the COM (red curve in Fig. 5.5), we notice an increase
of the COM of the Skyrmion. We also observe the same behavior within a tight bind-
ing model [67], where we found that the COM increases when increasing the size of the
Skyrmion, reaching a constant value for Skyrmions with Dsky & 5.0 nm as shown in
Fig. 5.6a. Therefore, for large Skyrmions the COM is quantized by inheriting a topolog-
ical nature, we call it a topological orbital magnetization (TOM). A quantization of the
topological Hall conductivity of Skyrmions was also observed in Ref. [232].
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Figure 5.5: Evolution of the orbital magnetization as a function of the number of Fe atoms in
the Skyrmion for three different sizes (19, 37 and 71 atoms). A comparison between the orbital
magnetization with and without spin-orbit interaction is shown.

In order to detect the chiral contribution to orbital moment within XMCD, we sug-
gest this experimental protocol: First, we consider Pd/Fe/Ir(111) which hosts magnetic
Skyrmions and apply a strong external magnetic field driving the system into a ferromag-
netic (FM) state. Second, using XMCD one can measure the net spin and orbital moments,
M(FM) and M orb(FM). In this ferromagnetic configuration the net orbital moment is
driven by SOI and is proportional to M(FM), i.e. M orb(FM) = αM(FM) as discussed in
Ref. [67]. When the intensity of the external magnetic field is reduced then Pd/Fe/Ir(111)
enters into the Skyrmion (Sk) phase. Then, the net orbital moment for the Skyrmion is
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given by M orb(Sk) = αM(Sk) + M orb(COM), where M orb(COM) is due to the chiral
contribution. Finally, when assuming that the proportionality constant in the Skyrmion
phase is the same as in the ferromagnetic one, then the chiral orbital magnetization ratio is
given as:

COMR =
M orb(Sky)

M orb(FM)
− M orb(Sky)

M orb(FM)
' M orb(COM)

M orb(FM)
. (5.17)

where COMR is the COM ratio. For large Skyrmions, the COM ratio becomes a TOM
ratio, which is found to be proportional to Q as shown in Fig. 5.6b.
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Figure 5.6: a) Net chiral orbital magnetization (COM) for Skyrmionic structures with different
topological charges [67] without SOI. b) COM ratio in presence of the SOI for the same structures
as in (a). The net COM obtained from our first principles simulations for the largest Skyrmion
(Fig 5.1 .c) is indicated (×) in (a). This figure was taken from Ref. [67]. Note that the convention
defining the size of the Skyrmions has been changed with respect to the one used in Fig. 5.1.

5.4.2 Connection between TOM and topological charge

Here, we discuss the connection between the TOM and the topological charge. We have
shown in Fig. 5.5 that the COM is increasing with the size of the Skyrmion. However,
we have seen in Fig 5.6 that the COM is quantized for Skyrmions sizes & 5 nm . This
can be understood by the following argument: The COM is proportional to the scalar
chirality as shown previously in Eq. (5.16). Then, we consider the discretized version for
the topological charge defined in Eq. (5.1). On a lattice Q is given as a sum over solid
angles in each triangle obtained by triangulating the lattice [233]:

Qi = 2 tan−1

[
~eMj
· (~eMk

× ~eMl
)

1 + ~eMj
· ~eMk

+ ~eMj
· ~eMl

+ ~eMl
· ~eMk

]
. (5.18)

Qi is the solid angle formed by three spin moments located at sites {j, k, l} defining the
triangle i. For magnetic textures which are slowly changing in space, the term contained
between brackets in Eq. (5.18) is small, thus, we can perform a Taylor expansion using
tan−1(x) ' x and obtain:

Qi ' 2

[
~eMj
· (~eMk

× ~eMl
)

1 + ~eMj · ~eMk
+ ~eMj · ~eMl

+ ~eMl
· ~eMk

]
. (5.19)
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Always considering magnetic textures slowly varying in space, the angle between the mag-
netic moments is small, thus, ~eMj

· ~eMl
' 1 and the expression of Qi simplifies even

further:
Qi '

1

2
~eMj
· (~eMk

× ~eMl
) . (5.20)

The topological charge is obtained by summing up the solid angles of all the triangles
contained in the Skyrmion:

Q =
1

4π

∑
4i
Qi . (5.21)

Using Eq. (5.20), Eq. (5.21) and Eq. (5.16), we establish a link between the topological
charge and TOM of the Skyrmion M orb

z,Sky:

M orb
z,Sky ∝ Q . (5.22)

Considering thatQ is quantized for Skyrmions, we conclude that for magnetic Skyrmions
with a large a radius (i.e. magnetization slowly varying in space), the total TOM is also
quantized. Here, we speculate that below 5 nm diameter higher order corrections to the
COM become important. For instance, the five spin chirality discussed in Sec. 3.9.6 is the
next term to consider. This implies the possibility of accessing high order spin chirality
via the XMCD protocol, which we proposed.

5.5 Summary and outlook
In this chapter, we have studied the electronic structure and the orbital magnetization of
single magnetic Skyrmions in Pd/Fe/Ir(111) from first principles. A multiple scattering ex-
pansion and a generalized Alexander-Anderson model were used to interpret the features
observed in LDOS of the Fe layer. It was shown that Skyrmions could be detected electri-
cally with a nonmagnetic tip. Indeed, the non-collinear magnetic texture of Skyrmions and
the SOI cause a mixing between minority and majority LDOS resulting into the TXMR
effect. Furthermore, we computed the orbital magnetization of the Skyrmions. When the
SOI is turned-off, a non-vanishing orbital magnetization is still observed (COM), origi-
nating from the scalar chirality of the spin moments. For the considered Skyrmions sizes,
we found that the total COM for the Skyrmion increases with the diameter. For large
magnetic Skyrmions, this chiral contribution becomes a topological orbital magnetization
(TOM) and is invariant under continuous deformations of the Skyrmion. We also sug-
gested an experimental protocol that allows to access the sign and magnitude of the TOM
using XMCD. Finally, we studied the connection between the TOM and the topological
charge Q and found that the TOM is proportional to Q for large Skyrmions (i.e. when the
angle between the spin moments is small).

The non-collinearity among the spin moments leads to several interesting effects sim-
ilar to the ones originating from the SOI. This opens the route for the investigations of
new effects such as: finite ground-state spin currents flowing through the Skyrmion with-
out SOI, which might give rise to Dzyaloshinskii-Moriya-like interactions [57]. Further-
more, the dynamics of these topological spin textures under external time-dependent elec-
tric/magnetic fields, in the framework of TD-DFT, is also unknown and is worth investi-
gating.
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Chapter 6
Conclusions

This thesis covered a wide variety of topics all connected via the interplay between mag-
netism and spin-orbit interaction (SOI). The theoretical work done in this thesis can find
potential applications in the field of spin-orbitronics. On the one hand, some problems
were treated by means of a Rashba model, which incorporates SOI in a simple way allow-
ing to track down its contribution to different quantities of interest such as magnetic inter-
actions, residual resistivity, and orbital magnetization. On the other hand, we employed
density functional theory (DFT) which provides an accurate description of the electronic
structure of materials allowing to make quantitative predictions. Furthermore, to treat mag-
netic excitations from first principles, an extension of DFT to its time-dependent version
was used (TD-DFT). The model approach and DFT are complementary since the former
one allows to interpret and understand the predictions made using DFT.

The scattering theory for a two-dimensional electron gas offered the fundamental tool
to explore the impact of SOI. Several lengthy and sometimes tedious analytical calcula-
tions have been carried out for a thorough understanding of the various investigated ef-
fects. The DFT approach in the framework of the Korringa-Kohn-Rostoker (KKR) Green
function method required an analytical understanding as well. Moreover, a new interface
between the KKR-impurity code and the KKR-susc code was implemented. These de-
velopments allowed the inclusion of the SOI starting from the host system, which is an
essential feature for the investigated systems.

In the first part of the thesis, we have used the Rashba Hamiltonian to model the spin
splitting of the energy bands observed at heavy metal surfaces. We used a real space em-
bedding technique to incorporate impurities into the Rashba electron gas. First, a mapping
into an extended Heisenberg model enabled the computation of the magnetic interactions.
When employing the Ruderman-Kittel-Kasuya-Yosida (RKKY) approximation, analytical
forms for the magnetic interaction tensor could be derived. These analytical forms were
also used to connect the isotropic exchange interaction to the DM interaction. We also
went beyond the RKKY approximation to rigorously include multiple scattering effects.
This proved to be crucial for the determination of the magnetic interactions, which de-
pend on the size and shape of the nanostructures. Second, we employed linear response
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theory to derive the residual electrical resistivity tensor for a Rashba electron gas in pres-
ence of a single nonmagnetic/magnetic impurity. The impact of the SOI strength on the
resistivity tensor was analyzed. For a general orientation of the magnetic moment of the
impurity, a planar Hall effect (PHE) has been observed in the transversal response, while
an anisotropic magnetoresistance (AMR) was found in the longitudinal part. Furthermore,
phenomenological functional forms for the dependence of the resistivity tensor on the
magnetization direction were derived. Third, we explored the orbital magnetization of
Rashba electrons in presence of magnetic impurities. It was accessed through the ground
state current density, which, in addition to the paramagnetic part, has a diamagnetic contri-
bution from SOI. For trimer nanoclusters in absence of SOI, a non-vanishing contribution
to the orbital magnetization was found (chiral orbital magnetization). We demonstrated
that the latter one arises solely from the chirality of the spins structure.

Based on DFT and TD-DFT, we investigated in the second part of the thesis magnetic
impurities embedded in topological insulators. We used DFT as implemented in the KKR
Green function method, allowing efficient real space calculations. We investigated 3d and
4d transition metal impurities embedded in Bi2Te3, Bi2Se3 thin films and bulk. When the
magnetic moments are oriented in the perpendicular direction with respect to the surface
of the topological insulator, a gap opening at the Dirac point was predicted [81, 16]. How-
ever, an analysis of the local density of states shows that some 3d and 4d elements display
very sharp features, which populate the bulk band gap. These features constitute in-gap
states originating from the hybridization with the bulk bands. Furthermore, we computed
the MAE for all the magnetic impurities. We highlighted the limitations of the magnetic
force theorem. We showed that, upon rotation of the spin moment, if the electronic struc-
ture at the Fermi energy changes drastically, then the MAE obtained from band energy
differences is not reliable. More elaborate schemes are required to obtain the MAE, which
can be calculated using the torque method near self-consistency or linear response theory.
We then computed the magnetic excitation spectrum of the impurities using linear response
TD-DFT. The peaks observed in the dynamical magnetic susceptibility were rather sharp
compared to the ones observed in metals. This was attributed to a lower hybridization with
the topological insulator host states. The lifetimes of the transversal spin excitations are
relatively large: the particular case of Mn in Bi2Se3 is rather astonishing, where the life-
time reached microseconds. Inertial effects were found to be important for some elements
(such as Nb in Bi2Te3), leading to a repositioning of the excitation energies. Finally, the
dynamical magnetic susceptibility was also used to compute zero-point spin-fluctuations,
which were found to be important for some elements and could alter their magnetic prop-
erties. Indeed, we showed that zero-point spin-fluctuations can lead to sign change of the
MAE for Nb in Bi2Te3.

In the third part of the thesis, we used the KKR Green function method to investi-
gate the ground state properties and the electronic structure of magnetic Skyrmions, which
represent topologically protected spin textures. We have shown that Skyrmions can be de-
tected electrically due to the signature that the non-collinearity imprints in the local density
of states, which we called tunneling spin mixing magnetoresistance. Furthermore, when
SOI is turned off, a chiral orbital magnetization is observed in the spin texture. Once more,
it arises from the non-collinearity among the spin moments. In the case of large magnetic
Skyrmions where the spin magnetization rotates slowly in space, we show that the chiral
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orbital magnetization is quantized by being proportional to the topological charge of the
Skyrmion and becomes thereby a topological orbital magnetization. Finally, we suggested
accessing the topological orbital moments experimentally using X-ray magnetic circular
dichroism (XMCD) for the identification of the topological nature of complex magnetic
textures by optical means.

To conclude our summary, we propose future interesting research directions beyond
what has been investigated in this thesis. We suggest to use the Biot-Savart law to quantify
the magnetic stray fields generated by the already investigated non-vanishing bound cur-
rents. This would provide means for detecting them experimentally. The computation of
the residual resistivity tensor was so far performed using a model. It would be interesting
to investigate it in the framework of the KKR Green function method for realistic materi-
als to make quantitative comparisons with experiment. In addition to the resistivity tensor
(charge response), one can explore the possibility of extracting the spin current response
containing information on the spin currents generated when an external electric field is
applied. This response might be substantial for magnetically doped topological insulators
due to a huge charge-to-spin conversion ratio, which can be exploited in a spin-orbitronic
device.

The TD-DFT work done in the thesis focused on the transversal spin response in pres-
ence of SOI, which can be used for the computation of the electron-magnon self-energy
employing many-body perturbation theory. This self-energy can be used to renormalize
the electronic structure. In this case, the anisotropy due to SOI would be included in the
electronic structure and in the spin excitations, providing a complete picture and eventu-
ally explain the results obtained in inelastic scanning tunneling spectroscopy (ISTS). In
addition, one can address the longitudinal response, which can be important in presence
of perturbations altering the magnitude of the spin moment. Moreover, we always focused
on the dynamics of the spin moment. However, for some elements such as Co in Bi2Se3,
the orbital moment reaches 50% of the spin moment, motivating the computation of the
orbital response function. Furthermore, the real space impurity clusters considered for our
calculations include up to a few hundreds of atoms. An improvement of the parallelization
scheme of the code would allow accessing larger nanostructures enabling the computation
of the topological orbital magnetization for large Skyrmions, and the study of its robustness
in presence of defects. Finally, the investigation of the dynamics of topological magnetic
structures such as Skyrmions using TD-DFT constitutes a challenging task computation-
ally. Alternatively one can also study Skyrmion dynamics in the time domain instead of
the frequency domain. A deep understanding of the behavior of Skyrmions in presence of
time-dependent external fields is required for any interesting technological applications.
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Appendix A
Derivation of the t-matrix in the
s-wave approximation

In this appendix, we derive the t-matrix in the s-wave approximation for magnetic adatoms
deposited on a free two-dimensional (2D) electron gas without spin-orbit interaction (the
Green function is diagonal in spin space). We start from the spin conserving Lippman-
Schwinger equation for the electronic wave function in the cylindrical basis:

ϕεmσ(~r) = ψεmσ(~r) +

∫
d~r ′d~r ′′Gσσ(~r, ~r ′, ε) tσσ(~r ′, ~r ′′, ε)ψεmσ(~r ′′) , (A.1)

where the 2D free electron wave function ψεmσ(~r) and Green function Gσσ(~r, ~r ′, ε) are
respectively given by:

ψεmσ(~r) = e−i
(2m+1)

4 π Jm(kr) eimφ (A.2)

Gσσ(~r, ~r ′, ε) =
1

2i

∑
m

Hm(kr) J∗m(kr) eim(φ−φ′) . (A.3)

Since the Green function and the wave functions are expanded in the cylindrical basis, one
also needs the expansion of the t-matrix in that basis. For a cylindrical scattering potential,
the t-matrix reads:

tσσ(~r, ~r ′, ε) =
1

2π

∑
m

eimφ tσσm (r, r′, ε) e−imφ′ . (A.4)

After inserting Eq.(A.3) and Eq.(A.4) into Eq.(A.1) and performing the double integral
over space, within the s-wave approximation tσσ(r, r′, ε) = tσσ(ε) δ(r) δ(r′):

ϕεmσ(~r) = ψεmσ(~r) + 2π
e−iπ4

2i
tσσ0 (ε)H0(kr) . (A.5)
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At large distance from the impurity, the scattered wave function ϕεmσ(~r) can be written
using the scattering phase shift δσσm (ε) (see chapter 3):

ϕεmσ(~r) = e2iδσσ0 (ε)ψεmσ(~r) . (A.6)

By comparing Eq.(A.5) and Eq.(A.6) in the asymptotic limit using the following expan-
sions:

J0(kr) =
1√

2πkr
ei(kr−π4 ) ,

H0(kr) =

√
2

πkr
ei(kr−π4 ) ,

(A.7)

we easily get the connection between the t-matrix and the scattering phase shift within the
s-wave approximation:

tσσ0 (ε) =
i

2π
(e2iδσσm (ε) − 1) . (A.8)

It can be also more convenient to define the t-matrix in the s-wave approximation without
the cylindrical expansion as:

tσσ(ε) = i (e2iδσσm (ε) − 1) . (A.9)

The 2D free electron Green function was defined in reduced units, it can be converted to
the natural unit by multiplying it with m∗

~2 , which leads to the final form of the t-matrix:

tσσ(ε) =
i~2

m∗
(e2iδσσm (ε) − 1) . (A.10)
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Appendix B
Extended Heisenberg model for a
magnetic dimer

In this appendix, we derive the generalized Heisenberg Hamiltonian Hm = ~ei J ij ~ej ,
which was simplified to the form given by Eq. (3.42). For this purpose, we need to cal-
culate the elements of the tensor of exchange interactions showing up in Eq. (3.40), i.e.
Tr {σαGij(ε)σβGji(ε)}, considering that Gij(ε) can be expressed in terms of GD and
GND (see Eq. (3.41)). This can be evaluated via the following trace (omitting the energy
integration):

Hm ∝ Tr [(~ei · ~σ)(GD σ0 − iGND(cosβ σy − sinβ σx))

× (~ej · ~σ)(GD σ0 + iGND(cosβ σy − sinβ σx))] .
(B.1)

Using the properties of the Pauli matrices, we know that for two vectors ~A and ~B, the
following relation holds: ( ~A · ~σ) ( ~B · ~σ) = ( ~A · ~B)σ0 + i ( ~A× ~B) · ~σ, therefore, Hm can
be written as:

Hm ∝ 2~ei · ~ej (G2
D −G2

ND)− 4 (~ei × ~ej)x iGD GND sinβ

− 4 (~ei × ~ej)y GD GND cosβ + 4 eyi e
y
j G

2
ND cos2 β

+ 4 exi e
x
j G

2
ND sin2 β − 2 (exi e

y
j + eyi e

x
j )G2

ND sinβ cosβ .

(B.2)

The terms proportional to exi e
x
j and eyi e

y
j will lead to the pseudo-dipolar like terms af-

ter performing the energy integration given in Eq. (3.49). The terms proportional to
(exi e

y
j + eyi e

x
j ) are called interface terms. We can combine both terms in a pseudo-dipolar

Hamiltonian for the two-dimensional case;

Hpsd ∝ I
∑
i,j

[(~ei · ~ej)− (~ei · ~rij)(~ej · ~rij)− ezi ezj ] . (B.3)

~rij is the vector connecting the impurities {i, j}. If we consider that the two magnetic
impurities are along the x-axis then β = 0 and we get the expression below for the trace:

Hm ∝ 2 (G2
D −G2

ND)~ei · ~ej − 4GD GND (~ei × ~ej)y + 4G2
ND e

y
i e

y
j , (B.4)
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which leads to the final form of the Hamiltonian given in Eq. (3.42), and to the identifica-
tion of the different magnetic interaction terms as presented in Eqs. (3.46), (3.47), (3.49).
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Appendix C
Asymptotic expansion of the
Rashba Green function

In order to obtain the analytical forms of J(r),D(r) and I(r) in the RKKY-approximation
(Eqs. (3.46), (3.47), (3.49)), we evaluate the integrands needed in Eqs. (3.43), (3.44),
(3.45) considering two regimes, positive or negative k1. For k1 < 0:

G2
D = − (m∗)2

4~2(k− + k+)2
[ k2
−H

∗2
0 (|k−|r)+k2

+H
2
0 (k+r)−2 k−k+H

∗
0 (|k−|r)H0(k+r) ] ,

(C.1)

G2
ND = − (m∗)2

4~2(k− + k+)2
[ k2
−H

∗2
1 (|k−|r)+k2

+H
2
1 (k+r)−2 k−k+H

∗
1 (|k−|r)H1(k+r) ] ,

(C.2)
and

GD GND = − (m∗)2

4~2(k− + k+)2
[−k2

−H
∗
0 (|k−|r)H∗1 (|k−|r) + k−k+H

∗
0 (|k−|r)H1(k+r)

+ k−k+ H∗1 (|k−|r)H0(k+r)− k2
+H1(k+r)H0(k+r) ] .

(C.3)

In case k− > 0:

G2
D = − (m∗)2

4~2(k− + k+)2
[ k2
−H

2
0 (k−r) + k2

+H
2
0 (k+r) + 2k−k+H0(k−r)H0(k+r) ] ,

(C.4)

G2
ND = − (m∗)2

4~2(k− + k+)2
[ k2
−H

2
1 (k−r)+k2

+H
2
1 (k+r)−2k−k+H1(k−r)H1(k+r) ] ,

(C.5)
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and

GD GND = − (m∗)2

4~2(k− + k+)2
[ k2
−H0(k−r)H1(k−r)− k−k+H0(k−r)H1(k+r)

+ k−k+H1(k−r)H0(k+r)− k2
+H0(k+r)H1(k+r) ] .

(C.6)

We use the asymptotic expansion for the Hankel functions for large distance (r → ∞):

H0(x) '
√

2
πx e

i(x−π4 ) and H1(x) '
√

2
πx e

i(x− 3π
4 ) which simplify the previous forms

for negative k− < 0 to:

G2
D =

i(m∗)2

2~2(k− + k+)2πr
[−|k−| e−2i|k−|r + k+ e

2ik+r + 2i
√
|k−|k+ e

i(k+−|k−|)r ] ,

(C.7)

G2
ND = − i(m∗)2

2~2(k− + k+)2πr
[−|k−| e−2i|k−|r+k+ e

2ik+r−2i
√
|k−|k+ e

i(k+−|k−|)r ] ,

(C.8)
and

GD GND =
(m∗)2

2~2(k− + k+)2πr
[−|k−| e−2i|k−|r − k+ e

2ik+r ] . (C.9)

While a positive k− leads to:

G2
D =

i(m∗)2

2~2(k− + k+)2πr
[ k− e

2ik−r + k+ e
2ik+r + 2

√
k−k+ e

i(k−+k+)r ] , (C.10)

G2
ND = − i(m∗)2

2~2(k− + k+)2πr
[ k− e

2ik−r +k+ e
2ik+r−2

√
k−k+ e

i(k−+k+)r ] , (C.11)

and

GD GND =
(m∗)2

2~2(k− + k+)2πr
[ k− e

2ik−r − k+ e
2ik+r ] . (C.12)

From the expressions above we notice that contrary to the terms (G2
D−G2

ND) andGD GND,
G2

D and G2
ND behave differently in the first and second regime.
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Appendix D
Evaluation of the momentum
operator matrix elements

In this appendix we will calculate the matrix elements of the momentum operator between
two quantum states i = (ε,m, α) and j = (ε + ~ω,m′, α′) in the region where the
scattered wave function can be expressed by the asymptotic form Eq. (3.63) and extract
only the diverging terms ∼ 1/ω in the limit ω→ 0. In cylindrical coordinates the leading
components of the momentum operator behaves at large distances as

v̂x ∼
~

im∗
cosφ

∂

∂r
+

~
m∗

kso σy

v̂y ∼
~

im∗
sinφ

∂

∂r
− ~
m∗

kso σx.

(D.1)

With this representation of the momentum operators, we found that the diverging terms
arise from the combinations〈

ψin,out
ε+~ω,m′,α′

∣∣∣m∗v̂x∣∣∣ψin,out
ε,m,α

〉
∼ ~(δm′,m+1 + δm′,m−1)δαα′

2i∆k

kM

kα
, (D.2)

where ∆k ≡ kα(ε+ ~ω)− kα(ε) ∼ 2m∗ω/kM(ε) is the same for both bands (α = ±).
By combining Eq. (3.63) and Eq. (D.2) we obtain the momentum matrix element in

the limit of ω → 0,

〈ϕj |m∗v̂x |ϕi〉 ∼
~

2i∆k

kM√
kαk′α

Sx(mα,m′α′, ε), (D.3)

where Sx(mα,m′α′, ε) is given by

Sx(mα,m′α′, ε) = (δm′,m+1 + δm′,m−1)δαα′

+
∑
lα′′

C(mα, lα′′)C∗(m′α′, l + 1α′′)

+
∑
lα′′

C(mα, lα′′)C∗(m′α′, l − 1α′′). (D.4)
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Analogously, the matrix element for the y component of the momentum operator is given
by

〈ϕj |m∗v̂y |ϕi〉 ∼
−~

2∆k

kM√
kαk′α

Sy(mα,m′α′, ε), (D.5)

with Sy defined by

Sy(mα,m′α′, ε) = (δm′,m+1 − δm′,m−1)δαα′

+
∑
lα′′

C(mα, lα′′)C∗(m′α′, l + 1α′′)

−
∑
lα′′

C(mα, lα′′)C∗(m′α′, l − 1α′′). (D.6)
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Appendix E
Phenomenological derivation of the
functional forms

Here we derive phenomenologically the functional forms, which fit the computed longitu-
dinal and transversal components of the residual resistivity tensor. The system of interest
is an adatom with a tilted magnetic moment interacting with a gas of Rashba electrons. We
assume a 2D current density flowing along the x-direction, Jx, that generates an electric
field ~E (see Fig.E.1a). Before analyzing the general case of a tilted magnetic moment, let
us recap what is expected when (i) the moment lies in-plane and (ii) the moment points
out-of-plane. In case (i), we proceed as done by Thompson et al. [157] and consider the
x-component of ~E:

E(i)
x = E‖ cosφ~M + E⊥ sinφ~M , (E.1)

where E‖ and E⊥ are the components of the electric field parallel and perpendicular to
the projection of the unit vector of the magnetic moment, ê~M, lying in the (xy) plane (the
surface plane) as depicted in Fig.E.1b. In terms of the current density and resistivity, the
previous equation is then rewritten considering the parallel and perpendicular projection
of the 2D current density on the direction of the magnetic moment:

E(i)
x = J‖ ρ‖ cosφ~M + J⊥ ρ⊥ sinφ~M , (E.2)

as function of the azimuthal angle φ~M. Also, knowing that J‖ = J cosφ~M ; J⊥ =
J sinφ~M (see Fig.E.1b) leads to:

E(i)
x = J (ρ‖ cos2 φ~M + ρ⊥ sin2 φ~M) . (E.3)

Here, though, we give this expression in terms of the unit vector, ê~M, defining the orienta-
tion of the moment:

E(i)
x = J

(
ρ‖(ê~M · êx)2 + ρ⊥(ê~M · êy)2

)
. (E.4)
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Figure E.1: (a) Geometry of the system considered: a magnetic moment rotated by a polar angle θ
and azimuthal angle φ. The current density J is related to the electric field E via the resistivity. (b)
Decomposition of the electric field and the current density parallel and perpendicular to the in-plane
projection of the unit vector of the magnetic moment ê~M.

Our proposal is that in the general case of a tilted magnetic moment, the previous two
equations involving ê~M · êx/y holds. However, there is a missing contribution from the
out-of-plane component of the magnetic moment. In the extreme case (ii), i.e. magnetic
moment out-of-plane, we have:

E(ii)
x = ρ(ii) J (E.5)

and a simple generalization leads to:

E(ii)
x = ρ(ii)J(ê~M · êz)2 . (E.6)

As deduced from our numerical investigation, ρ‖ = ρ(ii) (see Fig.3.13a). This can be
explained from Fig.3.12b for ~M ‖ z and Fig.3.12c for ~M ‖ x, where the allowed scattering
processes are the same except for the interband scattering which flips the spin but does not
change the direction of ~k. The latter affects only the spin part of the response function, not
the residual resistivity (charge part) that we compute. Therefore we get the same residual
resistivity for ~M ‖ z and ~M ‖ x. Now we can add up both contributions (i) and (ii) and
find:

Ex = J
(
ρ‖ ê~M · (êx + êz)

2) + ρ⊥ (ê~M · êy)2
)

, (E.7)

which simplifies into:

Ex = J
(
ρ‖ + (ρ⊥ − ρ‖) sin2 φ~M sin2 θ~M

)
. (E.8)

A similar approach can be used to derive the functional forms for the transversal part
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of the residual resistivity tensor. Here we address the y-component of ~E and again after
starting from the form of Thompson et al.[157] for the case (i):

E(i)
y = E‖ sinφ~M − E⊥ cosφ~M , (E.9)

we end up with
E(i)
y = J

(
ρ‖(ê~M · êy)2 − ρ⊥(ê~M · êx)2

)
. (E.10)

Since there is no transversal resistivity in the case (ii), the contribution E(ii)
y vanishes and

we find:
Ey = J(ρ⊥ − ρ‖) cosφ~M sinφ~M sin2 θ~M . (E.11)
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Appendix F
Derivation of the current operator

In this appendix, we provide the details of the derivation for current operator defined in
Eq. (3.110) starting from the time-dependent Schrödinger equation for the electronic wave
function ψ(~r, t):

∂ψ(~r, t)

∂t
=

1

i~
HR ψ(~r, t) , (F.1)

and for the hand left side,

∂ψ†(~r, t)
∂t

= − 1

i~
H†R ψ

†(~r, t) . (F.2)

The previous equations can be used to determine the time evolution of the electron density
n(~r, t) = |ψ(~r, t)|2:

∂n(~r, t)

∂t
=
∂ψ†(~r, t)

∂t
ψ(~r, t) + ψ†(~r, t)

∂ψ(~r, t)

∂t
,

= − 1

i~
H†R ψ

†(~r, t)ψ(~r, t) + ψ†(~r, t)
1

i~
HR ψ(~r, t) .

(F.3)

As reminder, we recall the expressions of the Rashba Hamiltonian HR and spin-orbit
gauge field ~Aso: HR = 1

2m∗

(
~p− e

c
~Aso

)2

− Vso ,

~Aso = m∗c αso
e~ (−σy,σx) .

(F.4)

Vso =
m∗α2

so
~2 is a constant which does not contribute to the current density. In the following

for simplicity we will drop the arguments of ψ(~r, t) and replace HR with its definition
Eq. (F.3), thus, we obtain:

∂n(~r, t)

∂t
=

1

2im∗~

[
(ψ†(~p− e

c
~Aso)2ψ)− ((~p− e

c
~Aso)2ψ)† ψ)

]
. (F.5)
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Since
[
~p, ~Aso

]
= 0 and the terms ∝ ~A

2

so vanish, Eq. (F.5) simply reads:

∂n(~r, t)

∂t
=

1

2im∗~

[
(ψ†~p 2ψ − (~p 2ψ)† ψ)− 2e

c
(ψ† ~Aso~pψ − (~pψ)† ~Aso ψ)

]
, (F.6)

In the position representation the momentum operator is defined as ~p = −i~~∇, therefore,
the first order time derivative of the particle density ρ(~r, t) can be written as:

∂n(~r, t)

∂t
= − ~

2im∗

[
(ψ†~∇ 2ψ − (~∇ 2ψ)† ψ)

]
+

e

m∗c

[
(ψ† ~Aso~∇ψ + (~∇ψ)† ~Aso ψ)

]
.

(F.7)
Considering that:

~∇(ψ† ψ) = ψ†~∇ψ + (~∇ψ)† ψ ,

~∇ · (ψ†~∇ψ − (~∇ψ†)ψ) = ψ†~∇ 2ψ − (~∇ 2ψ)† ψ .
(F.8)

Thus,

∂n(~r, t)

∂t
= − ~

2im∗

[
~∇ · (ψ†~∇ψ − (~∇ψ†)ψ)

]
+

e

m∗c
~∇ · (ψ† ~Aso ψ) . (F.9)

By comparing the previous equation with Eq. (3.102) we identify the current density:

~j(~r) =
~

2im∗
(ψ†~∇ψ − (~∇ψ†)ψ)− e

m∗c
(ψ†~Aso ψ) (F.10)

Since we want to compute the ground state current induced by magnetic impurities de-
posited on a Rashba electron gas, we now derive an expression for the current density
relying on the Green function of the system. The contribution to the ground state current
density from each state ψn is given by:

~jn(~r) =
~

2im∗
(ψ†n~∇ψn − (~∇ψ†n)ψn)− e

m∗c
(ψ†n ~Aso ψn) . (F.11)

The total current density at T = 0 K is:

~j(~r) =
∑
n

~
2im∗

(ψ†n~∇ψn − (~∇ψ†n)ψn)− e

m∗c
(ψ†n~Aso ψn) , (F.12)

Nocc is the number of occupied states

~j(~r) =
∑
n

∫ εF

dε δ(ε− εn+ i0+)
[ ~

2im∗
(ψ†n~∇ψn− (~∇ψ†n)ψn)− e

m∗c
(ψ†n ~Aso ψn)

]
.

(F.13)
Using the following identities:

δ(ε− εn + i0+) = − 1

π
Im

1

ε− εn + i0+
,

1

2i
(ψ†n~∇ψn − (~∇ψ†n)ψn) = Imψ†n~∇ψn .

(F.14)
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The current density can re-expressed as:

~j(~r) =− 1

π
Im

∫ εF

dε
[ ~

2im∗
∑
n

ψ†n~∇ψn − (~∇ψ†n)ψn
ε− εn + i0+

− e

m∗c

∑
n

ψ†n ~Aso ψn
ε− εn + i0+

]
.

(F.15)

We recall that the spectral representation of the Green function is:

G(~r, ~r ′, ε+ i0+) =
∑
n

ψn(~r)ψ†n(~r ′)
ε− εn + i0+

. (F.16)

We arrive at the final form of the current density in terms of the Green function:

~j(~r) =− 1

π
Im

∫ εF

dεTrσ

[ ~
2im∗

lim
~r ′→~r

(~∇~r − ~∇~r ′)G(~r, ~r ′, ε)

− e

m∗c
lim
~r ′→~r

~AsoG(~r, ~r ′, ε)
]

.

(F.17)

From the previous equation, the current operator is simply defined as:

~̂j =
~

2im∗
lim
~r ′→~r

(~∇~r − ~∇~r ′)−
e

m∗c
lim
~r ′→~r

~Aso . (F.18)
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[5] F. S. M. Guimarães, M. dos Santos Dias, J. Bouaziz, A. T. Costa, R. B. Muniz and S.
Lounis. Dynamical amplification of magnetoresistances and Hall currents up to the THz
regime. Scientific Reports, 7:3686, 2017.

[6] F. J. dos Santos, M. dos Santos Dias, F. S. M. Guimarães, J. Bouaziz and S. Lounis.
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[17] J. Bouaziz, H. Ishida, S. Blügel and S. Lounis. Electron-skyrmion scattering and
emergent Hall effects.



List of Tables 213

List of Tables

3.1 Summary of the average magnetic interactions between nearest neighbours
for the calculated magnetic nanostructures. The values between parenthe-
sis for the heptamer are for the nearest neighbors on the outer ring. . . . . 70

3.2 Summary of the net orbital and spin magnetizations obtained for the single
adatom (with the magnetic moment of the impurity ~Mi ‖ z-axis and x-
axis, respectively), dimer and trimer (with and without SOI). . . . . . . . 102

4.1 Crystal structure parameters for Bi2Te3 and Bi2Se3 [183]. a and c rep-
resent the lattice constants, µ and ν are the position of the Bi atoms and
the two equivalent Te atom defined in units of primitive translation vectors
given in Eq. (4.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Ground state properties of 3d impurities embedded in Bi2Te3 and in Bi2Se3

including the valence charge on the impurity Q, the spin moment Ms and
the orbital moment Ml. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Ground state properties of 4d impurities embedded in Bi2Te3 and in Bi2Se3

including the valence charge on the impurity Q, the spin moment Ms and
the orbital moment Ml (the negative sign on the orbital moment means
that it is antiparallel to Ms). . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Ground state properties of 3d impurities embedded in Bi2Te3 thin film
(subscript s) and in Bi2Te3 bulk (subscript b), Q is the valence charge on
the impurity, Ms is the spin moment and Ml is the orbital moment. . . . . 124

4.5 Anderson model parameters used to compute the bulk hybridization func-
tion and for majority LDOS of Cr. η is an artificial broadening added to
mimic the small imaginary part of the energy included in the first princi-
ples simulations. All the parameters are given in eV except nb which is
given in states/eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.6 Anderson model parameters used to compute the surface hybridization
function, and center of the majority spin channel of Cr. We used the same
η as in to the bulk case. All the parameters are given in eV. . . . . . . . . 128



214 List of Tables

4.7 Comparison between the MAE of 3d impurities obtained with KTorque(5◦)
and KSusc embedded in two different hosts Bi2Te3 and Bi2Se3. The real
space cluster contains 102 sites. . . . . . . . . . . . . . . . . . . . . . . 137

4.8 Comparison between the MAE of 4d impurities obtained with KTorque(5◦)
and KSusc embedded in two different hosts Bi2Te3 and Bi2Se3. The real
space cluster contains 102 sites. . . . . . . . . . . . . . . . . . . . . . . 138

4.9 LLG parameters for 3d impurities embedded in Bi2Te3 and in Bi2Se3 ob-
tained from fitting the magnetic susceptibility computed using TD-DFT.
Ms is the spin moment, Gs‖ and Ga⊥ are the transversal components of the
damping tensor, Is‖ and Ia⊥ transversal components of the nutation tensor,
they are given in meV−1. KSusc is the MAE obtained from the magnetic
susceptibility. ωNI

max is the resonance frequency without including nutation
(in meV) and the ratio ωc

ωNI
max

informs us about the relevance of the nutation. 144

4.10 LLG parameters for 4d impurities embedded in Bi2Te3 and in Bi2Se3 ob-
tained from fitting the magnetic susceptibility computed using TD-DFT.
Ms is the spin moment, Gs‖ and Ga⊥ are the transversal components of the
damping tensor, Is‖ and Ia⊥ are the transversal components of the nuta-
tion tensor, they are given in meV−1. KSusc is the MAE obtained from the
magnetic susceptibility. ωNI

max is the resonance frequency without including
nutation (in meV) and the ratio ωc

ωNI
max

informs us about the relevance of the
nutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.11 Comparison between the LLG parameters for 3d impurities embedded in
Bi2Te3 a bulk Bi site (b) and in the first subsurface Bi layer (s). The param-
eters are obtained from fitting the magnetic susceptibility computed using
TD-DFT. Ms is the spin moment, Gs‖ and Ga⊥ are the transversal compo-
nents of the damping tensor, Is‖ and Ia⊥ are the transversal components of
the nutation tensor, they are given in meV−1. KSusc is the MAE obtained
from the magnetic susceptibility. ωNI

max is the resonance frequency with-
out including nutation (in meV) and the ratio ωc

ωNI
max

informs us about the
relevance of the nutation. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.12 Comparison between the LLG parameters for 4d impurities embedded in
Bi2Te3 a bulk Bi site (b) and in the first subsurface Bi layer (s). The param-
eters are obtained from fitting the magnetic susceptibility computed using
TD-DFT. Ms is the spin moment, Gs‖ and Ga⊥ are the transversal compo-
nents of the damping tensor, Is‖ and Ia⊥ are the transversal components of
the nutation tensor, they are given in meV−1. KSusc is the MAE obtained
from the magnetic susceptibility. ωNI

max is the resonance frequency with-
out including nutation (in meV) and the ratio ωc

ωNI
max

informs us about the
relevance of the nutation. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.13 Comparison between the MAE obtained from the static magnetic suscep-
tibility with and without including the contributions of the ZPSF for 3d
elements embedded in Bi2Te3 and in Bi2Se3. The MAE of Co is the most
affected with a reduction of ∼ 4.8 meV. . . . . . . . . . . . . . . . . . . 153



List of Tables 215

4.14 Comparison between the MAE obtained from the static magnetic suscep-
tibility with and without including the contributions of the ZPSF for 4d
elements embedded in Bi2Te3 and Bi2Se3. The MAE of Nb is the most
affected with a reduction of ∼ 4.7 meV due to ZPSF larger than the spin
moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



216 List of Tables



List of Figures 217

List of Figures

2.1 Precession of the spin magnetic moment ~M around the effective field ~Beff.
a) Damping of the precession. b) Nutation of the spin magnetic moment. . 41

2.2 Comparison between: a) The old version of the KKR-JM/KKR-impurity/KKR-
susc codes and b) The new version of these codes. The recent develop-
ments required to compute dynamical magnetic susceptibility with SOI
included from the host system are also highlighted. . . . . . . . . . . . . 48

3.1 Spin texture in the reciprocal space for a Rashba electron gas. a) For neg-
ative energies located under the crossing of the Rashba bands. b) For pos-
itive energies located above the band crossing. . . . . . . . . . . . . . . . 52

3.2 Local density of states of an Fe adatom deposited on a Au(111) surface
described by a Lorentzian model wherein the broadening is induced by
hybridization effects among the electronic states of the impurity with those
of the substrate. Two cases are considered, a magnetic (a) versus a non
magnetic impurity (b). After defining the phase shifts at the Fermi energy
in the magnetic case, the phase shifts in the non-magnetic case are derived
considering the same charge for both type of impurities. . . . . . . . . . . 55

3.3 Evolution of the magnetic interactions J(r), D(r), I(r) (see Eq. (3.28))
as a function of the distance, for αso = −0.4 eV Å and m∗ = 0.26 me
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