000865999 001__ 865999
000865999 005__ 20210130003237.0
000865999 0247_ $$2doi$$a10.2136/vzj2019.04.0037
000865999 0247_ $$2Handle$$a2128/23161
000865999 0247_ $$2altmetric$$aaltmetric:69052714
000865999 0247_ $$2WOS$$aWOS:000491269700001
000865999 037__ $$aFZJ-2019-05259
000865999 082__ $$a550
000865999 1001_ $$0P:(DE-HGF)0$$aRao, Sathyanarayan$$b0
000865999 245__ $$aImpact of Maize Roots on Soil–Root Electrical Conductivity: A Simulation Study
000865999 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2019
000865999 3367_ $$2DRIVER$$aarticle
000865999 3367_ $$2DataCite$$aOutput Types/Journal article
000865999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572247900_31255
000865999 3367_ $$2BibTeX$$aARTICLE
000865999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865999 3367_ $$00$$2EndNote$$aJournal Article
000865999 520__ $$aElectrical resistivity tomography (ERT) has become an important tool for studying root-zone soil water fluxes under field conditions. The results of ERT translate to water content via empirical pedophysical relations, usually ignoring the impact of roots; however, studies in the literature have shown that roots in soils may actually play a non-negligible role in the bulk electrical conductivity (σ) of the soil–root continuum, but we do not completely understand the impact of root segments on ERT measurements. In this numerical study, we coupled an electrical model with a plant–soil water flow model to investigate the impact of roots on virtual ERT measurements. The coupled model can produce three-dimensional simulations of root growth and development, water flow in soil and root systems, and electrical transfer in the soil–root continuum. Our electrical simulation illustrates that in rooted soils, for every 1% increase in the root/sand volume ratio, there can be a 4 to 18% increase in the uncertainty of σ computed via the model, caused by the presence of root segments; the uncertainty in a loam medium is 0.2 to 1.5%. The influence of root segments on ERT measurements depends on the root surface area (r = ∼0.6) and the σ contrast between roots and the soil (r = ∼0.9), as revealed by correlation analysis. This study is important in the context of accurate water content predictions for automated irrigation systems in sandy soil
000865999 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000865999 588__ $$aDataset connected to CrossRef
000865999 7001_ $$0P:(DE-HGF)0$$aMeunier, Félicien$$b1
000865999 7001_ $$0P:(DE-Juel1)172828$$aEhosioke, Solomon$$b2
000865999 7001_ $$0P:(DE-HGF)0$$aLesparre, Nolwenn$$b3
000865999 7001_ $$0P:(DE-HGF)0$$aKemna, Andreas$$b4
000865999 7001_ $$0P:(DE-HGF)0$$aNguyen, Frédéric$$b5
000865999 7001_ $$0P:(DE-Juel1)129457$$aGarré, Sarah$$b6
000865999 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b7$$eCorresponding author
000865999 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2019.04.0037$$gVol. 18, no. 1, p. 0 -$$n1$$p $$tVadose zone journal$$v18$$x1539-1663$$y2019
000865999 8564_ $$uhttps://juser.fz-juelich.de/record/865999/files/vzj-18-1-190037.pdf$$yOpenAccess
000865999 8564_ $$uhttps://juser.fz-juelich.de/record/865999/files/vzj-18-1-190037.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865999 909CO $$ooai:juser.fz-juelich.de:865999$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000865999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b7$$kFZJ
000865999 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000865999 9141_ $$y2019
000865999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865999 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000865999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000865999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865999 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865999 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865999 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000865999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865999 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000865999 980__ $$ajournal
000865999 980__ $$aVDB
000865999 980__ $$aUNRESTRICTED
000865999 980__ $$aI:(DE-Juel1)IBG-3-20101118
000865999 9801_ $$aFullTexts