001     865999
005     20210130003237.0
024 7 _ |a 10.2136/vzj2019.04.0037
|2 doi
024 7 _ |a 2128/23161
|2 Handle
024 7 _ |a altmetric:69052714
|2 altmetric
024 7 _ |a WOS:000491269700001
|2 WOS
037 _ _ |a FZJ-2019-05259
082 _ _ |a 550
100 1 _ |a Rao, Sathyanarayan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Impact of Maize Roots on Soil–Root Electrical Conductivity: A Simulation Study
260 _ _ |a Alexandria, Va.
|c 2019
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1572247900_31255
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrical resistivity tomography (ERT) has become an important tool for studying root-zone soil water fluxes under field conditions. The results of ERT translate to water content via empirical pedophysical relations, usually ignoring the impact of roots; however, studies in the literature have shown that roots in soils may actually play a non-negligible role in the bulk electrical conductivity (σ) of the soil–root continuum, but we do not completely understand the impact of root segments on ERT measurements. In this numerical study, we coupled an electrical model with a plant–soil water flow model to investigate the impact of roots on virtual ERT measurements. The coupled model can produce three-dimensional simulations of root growth and development, water flow in soil and root systems, and electrical transfer in the soil–root continuum. Our electrical simulation illustrates that in rooted soils, for every 1% increase in the root/sand volume ratio, there can be a 4 to 18% increase in the uncertainty of σ computed via the model, caused by the presence of root segments; the uncertainty in a loam medium is 0.2 to 1.5%. The influence of root segments on ERT measurements depends on the root surface area (r = ∼0.6) and the σ contrast between roots and the soil (r = ∼0.9), as revealed by correlation analysis. This study is important in the context of accurate water content predictions for automated irrigation systems in sandy soil
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meunier, Félicien
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ehosioke, Solomon
|0 P:(DE-Juel1)172828
|b 2
700 1 _ |a Lesparre, Nolwenn
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kemna, Andreas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nguyen, Frédéric
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Garré, Sarah
|0 P:(DE-Juel1)129457
|b 6
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 7
|e Corresponding author
773 _ _ |a 10.2136/vzj2019.04.0037
|g Vol. 18, no. 1, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 1
|p
|t Vadose zone journal
|v 18
|y 2019
|x 1539-1663
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/865999/files/vzj-18-1-190037.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/865999/files/vzj-18-1-190037.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:865999
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129477
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21