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Impact of Maize Roots on 
Soil–Root Electrical Conductivity: 
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Electrical resistivity tomography (ERT) has become an important tool for studying 

root-zone soil water fluxes under field conditions. The results of ERT translate to 

water content via empirical pedophysical relations, usually ignoring the impact 

of roots; however, studies in the literature have shown that roots in soils may 

actually play a non-negligible role in the bulk electrical conductivity ( ) of the 

soil–root continuum, but we do not completely understand the impact of root 

segments on ERT measurements. In this numerical study, we coupled an electri-

cal model with a plant–soil water flow model to investigate the impact of roots on 

virtual ERT measurements. The coupled model can produce three-dimensional 

simulations of root growth and development, water flow in soil and root systems, 

and electrical transfer in the soil–root continuum. Our electrical simulation illus-

trates that in rooted soils, for every 1% increase in the root/sand volume ratio, 

there can be a 4 to 18% increase in the uncertainty of  computed via the model, 

caused by the presence of root segments; the uncertainty in a loam medium is 

0.2 to 1.5%. The influence of root segments on ERT measurements depends on 

the root surface area (r = ?0.6) and the  contrast between roots and the soil (r = 

?0.9), as revealed by correlation analysis. This study is important in the context of 

accurate water content predictions for automated irrigation systems in sandy soil.

Abbreviations: 3D, three-dimensional; ERT, electrical resistivity tomography.

Understanding root water uptake and the associated nutrients is critical for 

crop management but remains a challenging task because of the inherent difficulty in 

making and taking observations inside soils (de Dorlodot et al., 2007). Geophysical moni-

toring of root-zone soil moisture has received much interest in past decades as a way to 

tackle this challenge. One such method is ERT, which aims at retrieving the two- or three-

dimensional distribution of  or its inverse (electrical resistivity) in the soil from electric 

resistance measurements at discrete electrode locations (Beff et al., 2013). The  is thus 

related to the property or state variable of interest, such as the soil water content ( ), the 

porosity, the electrical conductivity of the soil fluid ( w), the temperature, or the mineral 

composition (Friedman, 2005). This is calculated through a proper pedophysical relation-

ship (e.g., quantifying  as a function of ). In cropped fields, ERT has been increasingly 

used for monitoring  (Michot et al., 2003; Srayeddin and Doussan, 2009; Garré et al., 

2013; Cassiani et al., 2015; De Carlo et al., 2015; Brillante et al., 2016; Vanella et al., 2018). 

More recently, ERT-estimated water content has been used for phenotyping root systems 

at the field scale (Whalley et al., 2017). Whalley et al. (2017) monitored changes in the 

 of the soil root zone under drying conditions at different soil depths, which acted as a 

proxy for root activity. However, the bulk electrical conductivity ( bulk) of a vegetated soil 

potentially containing roots depends not only on  but also on the roots and their impact 

on the soil structure (Garg et al., 2019). For example, a recent pot experiment showed that 

diseased and healthy roots in the soil could generate different ERT measurements (Corona-

Lopez et al., 2019). In some field experiments, different pedophysical relationships for soils 

with and without roots have been observed (Werban et al., 2008; Michot et al., 2016; Ni 

Core Ideas

• The impact of roots on bulk electri-

cal conductivity was studied using a 

modeling approach.

• The presence of roots affects petro-

physical relations.

• The effect of roots is more pro-

nounced in sandy soil than in loamy 

soil.

• Root surface and soil–root electrical 

contrast affect ERT measurements 

the most.
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The voltage-measuring electrodes dictate the Dirichlet 

boundary conditions:

e e eZ VJ   [5]

where Ze is the contact impedance of the voltage-measuring elec-

trodes (assumed to be 0.01  in this work), Je is the current density 

given by Je = ( / n̂ ), Ve is the voltage (in V), and ˆ n  is the unit 

normal perpendicular to d . Equations [3–5] are the governing 

equations for the ERT forward problem.

The ERT forward simulation finds voltage or apparent 

conductivity data by numerically solving Eq. [3–5] for a known 

distribution of . The voltage data (Ve) can be converted to appar-

ent conductivity data, namely that of an equivalent homogeneous 

medium, with an appropriate geometric factor for the electrodes. 

The apparent conductivity data measured between the line elec-

trodes in the y = 0 plane (the green and blue lines in Fig. 6a) of 

each wall (top, bottom, left, and right) gives the effective electri-

cal conductivity ( eff) in the vertical and horizontal directions, 

denoted effz and effx, respectively. Similarly, apparent conduc-

tivity measured between the surface quadrupoles ( abmn, black 

circles in Fig. 6a) gives the apparent conductivity. The electrical 

conduction model for the rhizotron is in three dimensions (the 

same as in the water uptake model in R-SWMS) with the follow-

ing overall dimensions: −11 cm < x < 11 cm, −1 cm < y < 1 cm, 

and −40 cm < z < 2 cm.

Upscaled Electrical Properties
To get an insight into how a root-filled soil might differ from 

bare soil electrical properties, we divided the forward finite element 

mesh into smaller blocks measuring 2 by 1 by 2 cm and computed 

the Wiener upper and lower bounds of  (Wiener, 1912; Jougnot et 

al., 2018) or the volume-weighted arithmetic and harmonic mean 

of  within each block (Fig. 2) via Eq. [6] and [7], respectively:
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V
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where Vi and i are the volume and electrical conductivity of the 

ith tetrahedron within an averaging block. We also computed the 

volume-weighted arithmetic mean of water content computed 

from  (Archie’s law in reverse, as shown in Fig. 2):

 
i ii
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V

V
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The blockwise-computed arithmetic average of electrical 

conductivity assumes that the finite elements in each averaging 

block are electrically connected in series, whereas the blockwise-

computed harmonic average of electrical conductivity assumes the 

elements to be in parallel. In reality, we expect the true bulk to 

be in between the blockwise-computed arithmetic and harmonic 

averages of , depending on the structural properties of the roots 

and soil elements. The relationship between the collection of aver-

aged data points from every averaging block and at all times (Days 

5–21) will then approximately mimic the impact of roots at the 

block scale on bulk, compared with Archie’s law applied in soils 

only ( bulk-soil). We also investigated the relationship between the 

effective properties ( effz and effx) and volume-averaged (at the 

rhizotron scale) water content at different times.

Relative Change in E�ective Conductivity 
Caused by Root Segments

The computation of eff ( effz and effx) and abmn was 

repeated for two scenarios: (i) a medium with the soil and root 

system included and (ii) a medium with only the soil, as if the 

roots had the same  than the surrounding soil. The difference in 

eff between the root and soil indicates the specific impact of root 

segments on the electrical measurements. Similarly, the difference 

in abmn between the root and soil indicates the specific impact of 

root segments on ERT measurements made by point electrodes at 

the surface rather than the effective properties.

We define a parameter describing the relative change in eff 

caused by the presence of root segments ( eff-rs), which is given by

eff-root eff-soil
eff-rs

eff-soil

  
     [9]

where eff-root is the eff of the medium with both roots and soil 

and eff-soil is the eff of the medium with soil only.

Similarly, the relative change in abmn computed by point 

electrodes caused by the presence of root segments is given by

abmn-root abmn-soil
abmn-rs

abmn-soil

  
     [10]

where abmn-root is the abmn of the medium with both roots and 

soil and abmn-soil is the abmn of the medium with soil only.

We investigated the relative change in eff at different root 

ages and with varying soil types (soil and loam; see Table 1). 

Furthermore, the relative change in eff averaged across two per-

pendicular directions ( eff-rs ) and abmn-rs are used as the 

parameters to assess the impact of roots in the following. We refer 

to eff-rs  and abmn-rs as the roots’ electrical signature term. 

We also define a term describing the contrast in  between root 

and bulk-soil, computed by subtracting the mean of bulk-soil from 

the mean of root. Here,  contrast is a single number that is a func-

tion of root age and soil type.

Scenario Analysis
We used the simulated synthetic data to achieve the objectives 

of this study, namely to find simulation-based answers to the ques-

tion of how root length density, root volume density, root age, and 
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Correlation analysis between root electrical signature terms 

and roots’ geometrical properties and soil–root  contrasts sug-

gested that the impact of roots on electrical measurements has 

multivariate dependency (Fig. 10). We cannot solely attribute the 

roots’ impact on bulk electrical properties to root mass density or 

root length density, but they somehow affect the results in com-

bination. However, the most important factors influencing the 

electrical signature were the soil–root electrical contrast, which 

showed a very high correlation of 0.89, and root surface area (r ? 

0.6); the root radius showed the lowest correlation. The principal 

component analysis biplots in Fig. 11 revealed that length and age 

were always correlated, as well as surface and volume, demonstrat-

ing similar information content.

Supplemental Material
The supplemental material includes the data used to generate Fig. 9. 10, and 11.
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