000866000 001__ 866000 000866000 005__ 20240711085657.0 000866000 0247_ $$2doi$$a10.1002/adfm.201906670 000866000 0247_ $$2ISSN$$a1057-9257 000866000 0247_ $$2ISSN$$a1099-0712 000866000 0247_ $$2ISSN$$a1616-301X 000866000 0247_ $$2ISSN$$a1616-3028 000866000 0247_ $$2Handle$$a2128/23773 000866000 0247_ $$2altmetric$$aaltmetric:69321965 000866000 0247_ $$2WOS$$aWOS:000492384200001 000866000 037__ $$aFZJ-2019-05260 000866000 082__ $$a530 000866000 1001_ $$0P:(DE-Juel1)180434$$aBöhm, Daniel$$b0$$eCorresponding author 000866000 245__ $$aEfficient OER Catalyst with Low Ir Volume Density Obtained by Homogeneous Deposition of Iridium Oxide Nanoparticles on Macroporous Antimony‐Doped Tin Oxide Support 000866000 260__ $$aWeinheim$$bWiley-VCH$$c2019 000866000 3367_ $$2DRIVER$$aarticle 000866000 3367_ $$2DataCite$$aOutput Types/Journal article 000866000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578044807_8646 000866000 3367_ $$2BibTeX$$aARTICLE 000866000 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000866000 3367_ $$00$$2EndNote$$aJournal Article 000866000 520__ $$aA multistep synthesis procedure for the homogeneous coating of a complex porous conductive oxide with small Ir nanoparticles is introduced to obtain a highly active electrocatalyst for water oxidation. At first, inverse opal macroporous Sb doped SnO2 (ATO) microparticles with defined pore size, composition, and open‐porous morphology are synthesized that reach a conductivity of ≈3.6 S cm$^{−1}$ and are further used as catalyst support. ATO‐supported iridium catalysts with a controlled amount of active material are prepared by solvothermal reduction of an IrO$_x$ colloid in the presence of the porous ATO particles, whereby homogeneous coating of the complete outer and inner surface of the particles with nanodispersed metallic Ir is achieved. Thermal oxidation leads to the formation of ATO‐supported IrO$_2$ nanoparticles with a void volume fraction of ≈89% calculated for catalyst thin films based on scanning transmission electron microscope tomography data and microparticle size distribution. A remarkably low Ir bulk density of ≈0.08 g cm$^{−3}$ for this supported oxide catalyst architecture with 25 wt% Ir is determined. This highly efficient oxygen evolution reaction catalyst reaches a current density of 63 A g$_{Ir}$$^{−1}$ at an overpotential of 300 mV versus reversible hydrogen electrode, significantly exceeding a commercial TiO$_2$‐supported IrO$_2$ reference catalyst under the same measurement conditions. 000866000 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000866000 588__ $$aDataset connected to CrossRef 000866000 7001_ $$0P:(DE-HGF)0$$aBeetz, Michael$$b1 000866000 7001_ $$0P:(DE-HGF)0$$aSchuster, Maximilian$$b2 000866000 7001_ $$0P:(DE-HGF)0$$aPeters, Kristina$$b3 000866000 7001_ $$0P:(DE-HGF)0$$aHufnagel, Alexander G.$$b4 000866000 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b5 000866000 7001_ $$0P:(DE-HGF)0$$aBöller, Bernhard$$b6 000866000 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b7 000866000 7001_ $$00000-0003-2008-0151$$aFattakhova‐Rohlfing, Dina$$b8$$eCorresponding author 000866000 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201906670$$gp. 1906670 -$$n1$$p1906670 -$$tAdvanced functional materials$$v30$$x1616-3028$$y2019 000866000 8564_ $$uhttps://juser.fz-juelich.de/record/866000/files/B-hm_et_al-2019-Advanced_Functional_Materials.pdf$$yOpenAccess 000866000 8564_ $$uhttps://juser.fz-juelich.de/record/866000/files/B-hm_et_al-2019-Advanced_Functional_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000866000 8767_ $$92019-10-08$$d2019-10-28$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padfm.201906670 000866000 909CO $$ooai:juser.fz-juelich.de:866000$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC 000866000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180434$$aForschungszentrum Jülich$$b0$$kFZJ 000866000 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-2008-0151$$aForschungszentrum Jülich$$b8$$kFZJ 000866000 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000866000 9141_ $$y2019 000866000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000866000 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000866000 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000866000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000866000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2017 000866000 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2017 000866000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000866000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000866000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000866000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000866000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000866000 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000866000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000866000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000866000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000866000 920__ $$lyes 000866000 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000866000 9801_ $$aAPC 000866000 9801_ $$aFullTexts 000866000 980__ $$ajournal 000866000 980__ $$aVDB 000866000 980__ $$aUNRESTRICTED 000866000 980__ $$aI:(DE-Juel1)IEK-1-20101013 000866000 980__ $$aAPC 000866000 981__ $$aI:(DE-Juel1)IMD-2-20101013