000866000 001__ 866000
000866000 005__ 20240711085657.0
000866000 0247_ $$2doi$$a10.1002/adfm.201906670
000866000 0247_ $$2ISSN$$a1057-9257
000866000 0247_ $$2ISSN$$a1099-0712
000866000 0247_ $$2ISSN$$a1616-301X
000866000 0247_ $$2ISSN$$a1616-3028
000866000 0247_ $$2Handle$$a2128/23773
000866000 0247_ $$2altmetric$$aaltmetric:69321965
000866000 0247_ $$2WOS$$aWOS:000492384200001
000866000 037__ $$aFZJ-2019-05260
000866000 082__ $$a530
000866000 1001_ $$0P:(DE-Juel1)180434$$aBöhm, Daniel$$b0$$eCorresponding author
000866000 245__ $$aEfficient OER Catalyst with Low Ir Volume Density Obtained by Homogeneous Deposition of Iridium Oxide Nanoparticles on Macroporous Antimony‐Doped Tin Oxide Support
000866000 260__ $$aWeinheim$$bWiley-VCH$$c2019
000866000 3367_ $$2DRIVER$$aarticle
000866000 3367_ $$2DataCite$$aOutput Types/Journal article
000866000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578044807_8646
000866000 3367_ $$2BibTeX$$aARTICLE
000866000 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866000 3367_ $$00$$2EndNote$$aJournal Article
000866000 520__ $$aA multistep synthesis procedure for the homogeneous coating of a complex porous conductive oxide with small Ir nanoparticles is introduced to obtain a highly active electrocatalyst for water oxidation. At first, inverse opal macroporous Sb doped SnO2 (ATO) microparticles with defined pore size, composition, and open‐porous morphology are synthesized that reach a conductivity of ≈3.6 S cm$^{−1}$ and are further used as catalyst support. ATO‐supported iridium catalysts with a controlled amount of active material are prepared by solvothermal reduction of an IrO$_x$ colloid in the presence of the porous ATO particles, whereby homogeneous coating of the complete outer and inner surface of the particles with nanodispersed metallic Ir is achieved. Thermal oxidation leads to the formation of ATO‐supported IrO$_2$ nanoparticles with a void volume fraction of ≈89% calculated for catalyst thin films based on scanning transmission electron microscope tomography data and microparticle size distribution. A remarkably low Ir bulk density of ≈0.08 g cm$^{−3}$ for this supported oxide catalyst architecture with 25 wt% Ir is determined. This highly efficient oxygen evolution reaction catalyst reaches a current density of 63 A g$_{Ir}$$^{−1}$ at an overpotential of 300 mV versus reversible hydrogen electrode, significantly exceeding a commercial TiO$_2$‐supported IrO$_2$ reference catalyst under the same measurement conditions.
000866000 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000866000 588__ $$aDataset connected to CrossRef
000866000 7001_ $$0P:(DE-HGF)0$$aBeetz, Michael$$b1
000866000 7001_ $$0P:(DE-HGF)0$$aSchuster, Maximilian$$b2
000866000 7001_ $$0P:(DE-HGF)0$$aPeters, Kristina$$b3
000866000 7001_ $$0P:(DE-HGF)0$$aHufnagel, Alexander G.$$b4
000866000 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b5
000866000 7001_ $$0P:(DE-HGF)0$$aBöller, Bernhard$$b6
000866000 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b7
000866000 7001_ $$00000-0003-2008-0151$$aFattakhova‐Rohlfing, Dina$$b8$$eCorresponding author
000866000 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201906670$$gp. 1906670 -$$n1$$p1906670 -$$tAdvanced functional materials$$v30$$x1616-3028$$y2019
000866000 8564_ $$uhttps://juser.fz-juelich.de/record/866000/files/B-hm_et_al-2019-Advanced_Functional_Materials.pdf$$yOpenAccess
000866000 8564_ $$uhttps://juser.fz-juelich.de/record/866000/files/B-hm_et_al-2019-Advanced_Functional_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866000 8767_ $$92019-10-08$$d2019-10-28$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padfm.201906670
000866000 909CO $$ooai:juser.fz-juelich.de:866000$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000866000 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180434$$aForschungszentrum Jülich$$b0$$kFZJ
000866000 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-2008-0151$$aForschungszentrum Jülich$$b8$$kFZJ
000866000 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000866000 9141_ $$y2019
000866000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866000 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866000 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866000 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866000 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2017
000866000 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2017
000866000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866000 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866000 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866000 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866000 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866000 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866000 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866000 920__ $$lyes
000866000 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866000 9801_ $$aAPC
000866000 9801_ $$aFullTexts
000866000 980__ $$ajournal
000866000 980__ $$aVDB
000866000 980__ $$aUNRESTRICTED
000866000 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866000 980__ $$aAPC
000866000 981__ $$aI:(DE-Juel1)IMD-2-20101013