001 | 866000 | ||
005 | 20240711085657.0 | ||
024 | 7 | _ | |a 10.1002/adfm.201906670 |2 doi |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 2128/23773 |2 Handle |
024 | 7 | _ | |a altmetric:69321965 |2 altmetric |
024 | 7 | _ | |a WOS:000492384200001 |2 WOS |
037 | _ | _ | |a FZJ-2019-05260 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Böhm, Daniel |0 P:(DE-Juel1)180434 |b 0 |e Corresponding author |
245 | _ | _ | |a Efficient OER Catalyst with Low Ir Volume Density Obtained by Homogeneous Deposition of Iridium Oxide Nanoparticles on Macroporous Antimony‐Doped Tin Oxide Support |
260 | _ | _ | |a Weinheim |c 2019 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1578044807_8646 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A multistep synthesis procedure for the homogeneous coating of a complex porous conductive oxide with small Ir nanoparticles is introduced to obtain a highly active electrocatalyst for water oxidation. At first, inverse opal macroporous Sb doped SnO2 (ATO) microparticles with defined pore size, composition, and open‐porous morphology are synthesized that reach a conductivity of ≈3.6 S cm$^{−1}$ and are further used as catalyst support. ATO‐supported iridium catalysts with a controlled amount of active material are prepared by solvothermal reduction of an IrO$_x$ colloid in the presence of the porous ATO particles, whereby homogeneous coating of the complete outer and inner surface of the particles with nanodispersed metallic Ir is achieved. Thermal oxidation leads to the formation of ATO‐supported IrO$_2$ nanoparticles with a void volume fraction of ≈89% calculated for catalyst thin films based on scanning transmission electron microscope tomography data and microparticle size distribution. A remarkably low Ir bulk density of ≈0.08 g cm$^{−3}$ for this supported oxide catalyst architecture with 25 wt% Ir is determined. This highly efficient oxygen evolution reaction catalyst reaches a current density of 63 A g$_{Ir}$$^{−1}$ at an overpotential of 300 mV versus reversible hydrogen electrode, significantly exceeding a commercial TiO$_2$‐supported IrO$_2$ reference catalyst under the same measurement conditions. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Beetz, Michael |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schuster, Maximilian |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Peters, Kristina |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Hufnagel, Alexander G. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Döblinger, Markus |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Böller, Bernhard |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Bein, Thomas |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Fattakhova‐Rohlfing, Dina |0 0000-0003-2008-0151 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1002/adfm.201906670 |g p. 1906670 - |0 PERI:(DE-600)2039420-2 |n 1 |p 1906670 - |t Advanced functional materials |v 30 |y 2019 |x 1616-3028 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866000/files/B-hm_et_al-2019-Advanced_Functional_Materials.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866000/files/B-hm_et_al-2019-Advanced_Functional_Materials.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866000 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |q OpenAPC |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180434 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 0000-0003-2008-0151 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2017 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ADV FUNCT MATER : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|