000866001 001__ 866001
000866001 005__ 20230426083215.0
000866001 0247_ $$2doi$$a10.1103/PhysRevB.100.144514
000866001 0247_ $$2ISSN$$a0163-1829
000866001 0247_ $$2ISSN$$a0556-2805
000866001 0247_ $$2ISSN$$a1050-2947
000866001 0247_ $$2ISSN$$a1094-1622
000866001 0247_ $$2ISSN$$a1095-3795
000866001 0247_ $$2ISSN$$a1098-0121
000866001 0247_ $$2ISSN$$a1538-4489
000866001 0247_ $$2ISSN$$a1550-235X
000866001 0247_ $$2ISSN$$a2469-9950
000866001 0247_ $$2ISSN$$a2469-9969
000866001 0247_ $$2Handle$$a2128/23162
000866001 0247_ $$2WOS$$aWOS:000491990400004
000866001 0247_ $$2altmetric$$aaltmetric:63403765
000866001 037__ $$aFZJ-2019-05261
000866001 082__ $$a530
000866001 1001_ $$0P:(DE-Juel1)168366$$aRiwar, R.-P.$$b0$$ufzj
000866001 245__ $$aEfficient quasiparticle traps with low dissipation through gap engineering
000866001 260__ $$aWoodbury, NY$$bInst.$$c2019
000866001 3367_ $$2DRIVER$$aarticle
000866001 3367_ $$2DataCite$$aOutput Types/Journal article
000866001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572252100_31252
000866001 3367_ $$2BibTeX$$aARTICLE
000866001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866001 3367_ $$00$$2EndNote$$aJournal Article
000866001 520__ $$aQuasiparticles represent an intrinsic source of perturbation for superconducting qubits, leading to both dissipation of the qubit energy and dephasing. Recently, it has been shown that normal-metal traps may efficiently reduce the quasiparticle population and improve the qubit lifetime, provided the trap surpasses a certain characteristic size. Moreover, while the trap itself introduces new relaxation mechanisms, they are not expected to harm state-of-the-art transmon qubits under the condition that the traps are not placed too close to extremal positions where electric fields are high. Here we study a different type of trap, realized through gap engineering. We find that gap-engineered traps relax the remaining constraints imposed on normal metal traps. First, the characteristic trap size, above which the trap is efficient, is reduced with respect to normal metal traps, such that here, strong traps are possible in smaller devices. Second, the losses caused by the trap are now greatly reduced, providing more flexibility in trap placement. The latter point is of particular importance, since for efficient protection from quasiparticles, the traps ideally should be placed close to the active parts of the qubit device, where electric fields are typically high.
000866001 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000866001 542__ $$2Crossref$$i2019-10-23$$uhttps://link.aps.org/licenses/aps-default-license
000866001 588__ $$aDataset connected to CrossRef
000866001 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b1$$eCorresponding author$$ufzj
000866001 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.144514$$bAmerican Physical Society (APS)$$d2019-10-23$$n14$$p144514$$tPhysical Review B$$v100$$x2469-9950$$y2019
000866001 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.144514$$gVol. 100, no. 14, p. 144514$$n14$$p144514$$tPhysical review / B$$v100$$x2469-9950$$y2019
000866001 8564_ $$uhttps://juser.fz-juelich.de/record/866001/files/PhysRevB.100.144514.pdf$$yOpenAccess
000866001 8564_ $$uhttps://juser.fz-juelich.de/record/866001/files/PhysRevB.100.144514.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866001 909CO $$ooai:juser.fz-juelich.de:866001$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b0$$kFZJ
000866001 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b1$$kFZJ
000866001 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000866001 9141_ $$y2019
000866001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866001 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866001 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000866001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000866001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866001 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866001 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866001 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866001 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866001 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866001 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866001 920__ $$lyes
000866001 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000866001 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000866001 980__ $$ajournal
000866001 980__ $$aVDB
000866001 980__ $$aUNRESTRICTED
000866001 980__ $$aI:(DE-Juel1)PGI-11-20170113
000866001 980__ $$aI:(DE-Juel1)PGI-2-20110106
000866001 9801_ $$aFullTexts
000866001 999C5 $$1M. H. Devoret$$2Crossref$$oM. H. Devoret Experimental Aspects of Quantum Computing 2005$$tExperimental Aspects of Quantum Computing$$y2005
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.76.042319
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1175552
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.014517
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.077002
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.144503
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.024503
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.097002
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.240501
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2936
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064517
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.122493
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.117002
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6836
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10977
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.100501
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.214521
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.020505
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.104516
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.220501
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.8.064028
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.066802
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.230509
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aah5844
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.106603
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.172504
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.024502
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.054513
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/spmi.1999.0710
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.214517
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104515
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.14.4854
000866001 999C5 $$1P. M. Echternach$$2Crossref$$oP. M. Echternach Proceedings of the Tenth International Symposium on Space Terahertz Technology 1999$$tProceedings of the Tenth International Symposium on Space Terahertz Technology$$y1999
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6668/aad788
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00119193
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.78.217
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.111.412
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.134502
000866001 999C5 $$1M. Tinkham$$2Crossref$$oM. Tinkham Introduction to Superconductivity 2004$$tIntroduction to Superconductivity$$y2004
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.174521
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.157701
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.123.107704
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.2779
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms12964
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.080502
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13017
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.047001
000866001 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.4.011033
000866001 999C5 $$1C. W. J. Beenakker$$2Crossref$$oC. W. J. Beenakker Proceedings of the 14th Taniguchi Symposium 1992$$tProceedings of the 14th Taniguchi Symposium$$y1992