Home > Publications database > Efficient quasiparticle traps with low dissipation through gap engineering > print |
001 | 866001 | ||
005 | 20230426083215.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.100.144514 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/23162 |2 Handle |
024 | 7 | _ | |a WOS:000491990400004 |2 WOS |
024 | 7 | _ | |a altmetric:63403765 |2 altmetric |
037 | _ | _ | |a FZJ-2019-05261 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Riwar, R.-P. |0 P:(DE-Juel1)168366 |b 0 |u fzj |
245 | _ | _ | |a Efficient quasiparticle traps with low dissipation through gap engineering |
260 | _ | _ | |a Woodbury, NY |c 2019 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1572252100_31252 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Quasiparticles represent an intrinsic source of perturbation for superconducting qubits, leading to both dissipation of the qubit energy and dephasing. Recently, it has been shown that normal-metal traps may efficiently reduce the quasiparticle population and improve the qubit lifetime, provided the trap surpasses a certain characteristic size. Moreover, while the trap itself introduces new relaxation mechanisms, they are not expected to harm state-of-the-art transmon qubits under the condition that the traps are not placed too close to extremal positions where electric fields are high. Here we study a different type of trap, realized through gap engineering. We find that gap-engineered traps relax the remaining constraints imposed on normal metal traps. First, the characteristic trap size, above which the trap is efficient, is reduced with respect to normal metal traps, such that here, strong traps are possible in smaller devices. Second, the losses caused by the trap are now greatly reduced, providing more flexibility in trap placement. The latter point is of particular importance, since for efficient protection from quasiparticles, the traps ideally should be placed close to the active parts of the qubit device, where electric fields are typically high. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
542 | _ | _ | |i 2019-10-23 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Catelani, G. |0 P:(DE-Juel1)151130 |b 1 |e Corresponding author |u fzj |
773 | 1 | 8 | |a 10.1103/physrevb.100.144514 |b American Physical Society (APS) |d 2019-10-23 |n 14 |p 144514 |3 journal-article |2 Crossref |t Physical Review B |v 100 |y 2019 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.100.144514 |g Vol. 100, no. 14, p. 144514 |0 PERI:(DE-600)2844160-6 |n 14 |p 144514 |t Physical review / B |v 100 |y 2019 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866001/files/PhysRevB.100.144514.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866001/files/PhysRevB.100.144514.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866001 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168366 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)151130 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |1 M. H. Devoret |y 2005 |2 Crossref |t Experimental Aspects of Quantum Computing |o M. H. Devoret Experimental Aspects of Quantum Computing 2005 |
999 | C | 5 | |a 10.1103/PhysRevA.76.042319 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1175552 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.72.014517 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.106.077002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.85.144503 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.78.024503 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.103.097002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.107.240501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms2936 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.84.064517 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.122493 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.113.117002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms6836 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms10977 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.77.100501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.80.214521 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.85.020505 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.104516 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.96.220501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.8.064028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.92.066802 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.108.230509 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.aah5844 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.97.106603 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.73.172504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.98.024502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.97.054513 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1006/spmi.1999.0710 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.77.214517 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.78.104515 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.14.4854 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 P. M. Echternach |y 1999 |2 Crossref |t Proceedings of the Tenth International Symposium on Space Terahertz Technology |o P. M. Echternach Proceedings of the Tenth International Symposium on Space Terahertz Technology 1999 |
999 | C | 5 | |a 10.1088/1361-6668/aad788 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF00119193 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.78.217 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.111.412 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.82.134502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 M. Tinkham |y 2004 |2 Crossref |t Introduction to Superconductivity |o M. Tinkham Introduction to Superconductivity 2004 |
999 | C | 5 | |a 10.1103/PhysRevB.87.174521 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.121.157701 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.123.107704 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.56.2779 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms12964 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.080502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature13017 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.121.047001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevX.4.011033 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 C. W. J. Beenakker |y 1992 |2 Crossref |t Proceedings of the 14th Taniguchi Symposium |o C. W. J. Beenakker Proceedings of the 14th Taniguchi Symposium 1992 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|