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R.-P. Riwar and G. Catelani
JARA Institute for Quantum Information (PGI-11), Forschungszentrum Jülich, 52425 Jülich, Germany

(Received 15 July 2019; revised manuscript received 10 September 2019; published 23 October 2019)

Quasiparticles represent an intrinsic source of perturbation for superconducting qubits, leading to both
dissipation of the qubit energy and dephasing. Recently, it has been shown that normal-metal traps may
efficiently reduce the quasiparticle population and improve the qubit lifetime, provided the trap surpasses a
certain characteristic size. Moreover, while the trap itself introduces new relaxation mechanisms, they are not
expected to harm state-of-the-art transmon qubits under the condition that the traps are not placed too close
to extremal positions where electric fields are high. Here we study a different type of trap, realized through
gap engineering. We find that gap-engineered traps relax the remaining constraints imposed on normal metal
traps. First, the characteristic trap size, above which the trap is efficient, is reduced with respect to normal metal
traps, such that here, strong traps are possible in smaller devices. Second, the losses caused by the trap are now
greatly reduced, providing more flexibility in trap placement. The latter point is of particular importance, since
for efficient protection from quasiparticles, the traps ideally should be placed close to the active parts of the qubit
device, where electric fields are typically high.
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I. INTRODUCTION

Superconducting circuits are prime candidates for a suc-
cessful physical implementation of qubits, the fundamental
building blocks of quantum computers [1–3]. In order to
ensure a stable and sufficiently error-free computation, qubits
need to be protected from possible perturbations. In particular,
quasiparticle excitations pose a serious problem as an intrinsic
source of errors [4–10]. Their harmful effect comes from
the coupling to the qubit degrees of freedom, when they
tunnel across a Josephson junction, as was shown in Ref [11].
This mechanism can be a particularly severe issue, because
experiments have shown that quasiparticles occur at much
higher densities than those expected in thermal equilibrium
[8,10].

In order to mitigate the negative effects of quasiparticles,
one needs to find ways to evacuate them from the active
parts of the device. So far two classes of strategies have been
proposed and tested. The first class, the one we focus on in this
paper, includes introducing local regions containing subgap
states into which quasiparticles can relax. Such quasiparticle
traps have been realized through introducing vortices [12–15],
tunnel coupling the device to normal metals [16–21], or
through gap engineering [22,23]. A second strategy involves
a time-dependent control of the device, in order to pump
quasiparticles away through pulses [24].

In the present paper, we theoretically study traps imple-
mented via gap engineering, that is, by coupling the supercon-
ductor S used to fabricate the active device part (usually, one
or more Josephson junctions) to a different superconductor
S′ with a lower gap. The effect of gap engineering was ex-
tensively studied for Cooper-pair transistors [7,16,22,25,26].
In essence, the circuit can be efficiently protected from
quasiparticles by making transistors where the central islands
have a higher gap than the leads. For circuits with only
single junctions, such as transmons, the gap engineering must

performed in a more sophisticated manner, e.g., by proxim-
itizing parts of the circuit. This was attempted in Ref. [23],
where the gap was locally increased at the junction; however,
there was no unequivocal proof of a beneficial effect, possibly
due to a nonoptimal choice of the design. Here we propose
different designs of gap-engineered traps located further away
from the junction, building on our previous insights from
normal metal traps, which were shown to be efficient [19].
In particular, we predict an improvement compared to normal
metal traps, in terms of both increased trapping efficiency and
reduction of unwanted adverse effects.

In order to appreciate these improvements, we summarize
our past works on normal metal traps [19,21,27]. The most im-
portant conclusions are the following. There is a minimal trap
size above which the trap is “strong” [19], in the sense that the
quasiparticle evacuation rate is limited by diffusion through
the device. Importantly, this minimal trap size depends on
the quality of the superconductor-normal metal (SN) interface
and can become large due to a quasiparticle backflow stem-
ming from the peak in the superconducting density of states
just above the gap. This limits the effectiveness of normal-
metal traps in small devices. For sufficiently large traps,
the quasiparticle evacuation can be significantly accelerated
by splitting the trap into many pieces and distributing them
evenly over the device [21]. However, likewise the positive
effect of trap splitting is limited, as soon as the individual trap
pieces approach the minimal size. Finally, we have shown that
placing traps close to active parts of the circuit is favorable for
the qubit lifetime, as it suppresses the quasiparticle density
and its fluctuations at the place where it does the most harm.

On the other hand, normal metal traps themselves intro-
duce new processes that could limit the quality factor of
the qubit [27,28]. The two most important processes are the
dissipation in the normal metal bulk due to the ac charge re-
distribution in the circuit and the losses due to photo-assisted
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tunneling at the SN interface. While the latter is expected to
be sufficiently small, the former process can potentially pose
problems if traps are placed too close to active parts of the
circuit where electric fields are high. This issue is thus in
competition with the optimization principle mentioned above,
where traps close to the active parts increases the protection
from the nonequilibrium quasiparticles. Normal metals can
also induce, via the inverse proximity effect, subgap states that
increase the qubit decay rate, but this effect is exponentially
suppressed with distance from the active parts and can be
neglected.

We here propose to replace the weakly coupled normal
metal pieces, with strongly coupled superconducting parts
with a significantly lower gap. For sufficiently good inter-
faces, the proximity effect will introduce a spatially dependent
gap in the circuit (see, e.g., Refs. [28,29] and references
therein) and provide a region where the quasiparticles can
be trapped. Studying the quasiparticle diffusion dynamics, we
predict that the minimal trap size to reach the strong trapping
limit is reduced with respect to normal metal traps, making
efficient traps possible in devices of smaller sizes. In partic-
ular, the unfavorable backflow of quasiparticles from normal
metals is absent here. Second, we investigate the dominant
dissipation processes induced by the gap-engineered traps. We
find that charge redistribution currents no longer pose a threat,
since the presence of the lower gap reduces the bulk resistiv-
ity by several orders of magnitude. Photo-assisted tunneling
processes on the other hand can now become more important
since the improved interfaces increase the tunneling rate.
Overall, we show however that in practice gap-engineered
traps do not cause any harmful side effect.

This paper is structured as follows. In Sec. II we present
the diffusion model for qubits with gap-engineered traps and
provide our results for the quasiparticle diffusion dynamics.
In Sec. III we estimate the dominant dissipation processes
induced by these traps. Our conclusions are presented in
Sec. IV. In Appendix A we provide a microscopic justification
for our diffusion model. In Appendix B we detail our estimate
for the dissipation due to photo-assisted tunneling. Finally,
in Appendix C we compute the geometric capacitances for
coplanar circuits.

II. DIFFUSION AND TRAPPING OF
QUASIPARTICLES IN AN SS′ TRAP

A. The diffusion model

We study the following model. The starting point consists
of a conventional transmon circuit, made from a certain
superconducting material S with gap �. Part of this circuit
is in contact with a second superconductor S′, with a lower
gap �S′ ; see Fig. 1(a). We are interested in the limit, where
there is a good contact between the two superconductors, such
that S gets proximitized, making its gap position-dependent,
�(y) [see Fig. 1(b)]. The proximity effect thus provides a
gap-engineered quasiparticle trap in the transmon [30]. Quasi-
particles at energy ≈ � or above will then, once they diffuse
into the lower gap region, relax, and consequently become
confined to the proximitized region. The essential trapping
principle is therefore the same as in the previously studied

S

FIG. 1. (a) Transmon qubit made out of superconductor S with
a gap �. The trap is realized through gap engineering with a second
superconductor S′ which has a lower gap �S′ . The middle dashed line
marks the origin of the y axis (horizontal direction). One transmon
side has the total length L. The second superconductor S′ is attached
to the transmon with a distance a from edge to edge and has length
L′. The two transmon plates are separated by a small distance D �
a, L. For most of the discussion (unless specified otherwise) we
set D → 0. (b) The resulting position dependence of the gap inside
the transmon, as a function of y. The change of the gap parameter
is occurring on the length scale of the coherence length. Once the
quasiparticles diffuse into the region with the lower gap, they may
relax to energies below � and are thus trapped.

normal-metal traps, except that with proximitized traps we ex-
pect several improvements in terms of trapping performance,
as well as a reduction of unwanted side effects, as we detail in
the course of this paper.

As indicated in Fig. 1(b), deep within the proximitized
region, the gap approaches a certain value �̃, with �S′ � �̃ �
�. The smooth change from � to �̃ in the proximitized part
of the superconductor occurs on the scale of the coherence
length [31].

We will show below that the coherence length (∼100 nm
in thin aluminum films [32,33]) is small in comparison to the
diffusion length scales, such that on the level of the diffusion
equation, we can assume an immediate, discontinuous drop of
the gap parameter �(y) = �θ (a − y) + �̃θ (y − a), for 0 �
y � L, where L is the total device size, and a � y � L is the
proximitized part.

Finally, in the following, we are interested in the quasipar-
ticles located in the active parts of the circuit, which can ac-
tually disrupt the qubit state. This concerns the quasiparticles
at energies above �, for which we define the dimensionless
density (normalized by the density of Cooper pairs)

xqp(y) = 2

�

∫ ∞

�

dε
ε√

ε2 − �2(y)
fqp(ε, y). (1)
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For this quantity, we can formulate the phenomenological
diffusion equation

ẋqp(y) = ∂y[Dqp(y)∂yxqp(y)] − τ−1
r θ (y − a)xqp(y), (2)

where Dqp is the (effective) quasiparticle diffusion constant.
For the microscopic justification of this equation from a more
general energy-dependent diffusion term, see Appendix A.

In the diffusion equation we have included a relaxation
term—the last term on the right-hand side—responsible for
trapping quasiparticles through relaxation to energies below
�. We assume that the relaxation rate τ−1

r is due to inelastic
electron-phonon interactions and can therefore be computed
according to Ref. [34]. For � � �̃ and temperatures small
compared to �̃/kB, it results in

τ−1
r ≈

{
1 − 6

�̃2

�2

[
ln

(
2
�

�̃

)
− 1

]}
τ−1

N (3)

and approaches the normal-metal relaxation rate 1/τN [35].
For almost equivalent gaps, � � �̃, we receive

τ−1
r ≈ 64

√
2

35

(
1 − �̃

�

) 7
2

τ−1
N , (4)

that is, a relaxation rate much smaller than the normal-metal
relaxation rate. Note that here we have assumed again suffi-
ciently small temperature, kBT � � − �̃, even though � −
�̃ � �. Obviously, it is therefore advantageous to choose a
sufficiently low gap and strong proximity effect to achieve
fast relaxation. As a realistic example, we note that good
contact can be achieved between aluminum and titanium
films, and that the Al to Ti (bulk) critical temperature ratio is
about 3. By varying the thicknesses of the two materials, and
possibly adding a normal-metal layer (e.g., gold), the critical
temperature and hence the gap can be tuned over a wide range
[36,37].

Let us note at this point, that the relaxation term in Eq. (2)
is analogous to the effective trapping rate �eff used to model
normal-metal traps [19], with a slight difference. Namely,
for normal-metal traps, the trapping mechanism involves both
quasiparticle tunneling (to the normal metal) and subsequent
relaxation, hence �eff is not simply equal to τ−1

r (for more
details, see Sec. II C). With gap-engineered traps on the other
hand, we exclusively have to take into account the latter
process, which is why the bare τ−1

r appears in the quasiparticle
dynamics. Therefore, we could in principle use interchange-
ably the nomenclature “relaxation rate” and “trapping rate” to
refer to τ−1

r . We will nonetheless stick to the term “trapping
rate” in the remainder of this work to unify the language and
to emphasize the formal analogy to the quasiparticle dynamics
with normal metal traps.

As for the time τN , estimates for bulk metals [34] range
from 10−10 to 10−6 s. However, in thin films the acoustic
mismatch with the substrate leads to the so-called phonon-
trapping effect [38] which, similarly to the effect on the quasi-
particle recombination time, could increase the (effective)
time τN above its bulk value. Here we note that experiments
with normal-metal traps made of copper are compatible with
a value τN ∼ 4 × 10−7 s [19]. One can also estimate τN from
the quantity � relating the power P per unit volume dissi-
pated by electron-phonon scattering to electron and phonon

temperatures via P = �(T 5
e − T 5

ph) [39]; the estimate takes
the form τN 
 75νk5

B/��3, with ν the density of states in
S. For the metals reported in Table I of Ref. [39], this gives
τN ranging, e.g., from 8 × 10−8 s for copper to 8 × 10−7 s for
aluminum.

B. The dynamics of quasiparticle trapping

In order to examine the quasiparticle diffusion dynamics,
we need to find the eigenvalues of Eq. (2). They can be found
when rewriting above diffusion equation separately for each
side,

ẋqp(y) =Dqp∂
2
y xqp(y), y < a, (5)

ẋqp(y) =D̃qp∂
2
y xqp(y) − τ−1

r xqp(y), y > a, (6)

and at the interface y = a, the quasiparticle density has to be
continuous and satisfy the boundary condition

D̃qp∂yxqp|y=a+0+ = Dqp∂yxqp|y=a−0+ , (7)

which expresses the conservation of current. In order to study
the quasiparticle diffusion dynamics, we proceed similarly as
in Ref. [19,21]. Namely, both Eqs. (5) and (6) have eigen-
modes of the form xqp(y < a) ∼ e−λkt cos(ky) and xqp(y >

a) ∼ e−λ̃k̃ t cos([L − y]k̃), respectively, which decay with the
constant rates λk = Dqpk2 and λ̃k̃ = D̃qpk̃2 + τ−1

r . The respec-
tive cosine forms are chosen such as to take into account the
hard wall boundary conditions at y = 0 and y = L. Requiring
that these rates are the same for an eigenmode of the total
system (i.e., for y from 0 to L), we find

k̃ =
√

Dqp

D̃qp
k2 − 1

L2
r

, (8)

where Lr =
√

D̃qpτr . Taking now into account the boundary
condition at y = a, Eq. (7), we find that this imposes an
additional condition on k,

1

Lrk
tan(ka) = − Lr̃k

1 + (Lrk̃)2
tan([L − a]k̃). (9)

As a result, this fixes the allowed values of k to discrete
values and, consequently, also the eigenvalues of the diffusion
equation are discrete, due to the finite system size. At suffi-
ciently long times, the eigenmode with the lowest k will be the
dominant one. In fact, one can show that for the lowest k, k̃ is
always imaginary, k̃ = iκ , with κ =

√
1/L2

r − Dqpk2/D̃qp ,
such that we can rewrite −k̃ tan([L − a]k̃) = κ tanh([L −
a]κ ).

We proceed next by assuming that D̃qp > Dqp, meaning
that the quasiparticles at energies E � � diffuse faster in
the part with the lower gap. This is due to the quasiparticle
diffusion constant decreasing close to the respective gap (see
also Appendix A). We then arrive at closed expressions for
the slowest density decay rate λ0 in the limiting cases shown
in Table I.

C. Comparison to normal-metal traps

With these results, we are now equipped to compare gap-
engineered traps to normal-metal traps [19,21]. In the latter
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TABLE I. The decay rate of the lowest mode for different
regimes, as obtained from Eq. (9). Here large/small trap refers to
the trap length L − a in comparison to the length a of the nonprox-
imitized region; see Fig. 1.

Trap size Relaxation limit Diffusion limit

a � L − a λ0 ≈ τ−1
r λ0 ≈ π2

4
Dqp

a2

Large trap a � √
Dqpτr a � √

Dqpτr

a � L − a λ0 ≈ L−a
L τ−1

r λ0 ≈ π2

4
Dqp

L2

Small trap L − a � Dqpτr

L L − a � Dqpτr

L

case, for typical values of the tunneling rate between super-
conductor and normal metal, the effective trapping rate of
quasiparticles close to the trap is limited by the relaxation pro-
cess in the normal metal, rather than by the tunneling process;
the resulting trapping rate is τ−1

r ∼ √
kBT/�τ−1

N , with T �
�/kB the (effective) quasiparticle temperature. Note that this
rate is smaller than τ−1

N ; this suppression is due to a significant
escape of quasiparticles back into the superconductor because
of the strongly peaked density of states in the superconductor.

The suppression of the trapping rate results additionally
in the need for longer normal-metal traps compared to gap-
engineered ones. To quantify this statement, we point out that
for both types of traps, there is a transition from weak to strong
(efficient) trapping as a function of the trap size. When traps
are small the decay rate of the quasiparticle density is roughly
given by the trapping rate times the ratio of the trap length over
the system size (cf. the central bottom entry in Table I). For
sufficiently long traps, on the other hand, the density decay
rate is limited by the diffusion time in the device (cf. the right
bottom entry in Table I). By comparing the two density decay
rates, one finds the minimal trap length for which the density
decay rate is limited by diffusion, which for normal-metal
traps is given by [19]

dN ∼
√

�

kBT

DqpτN

L
, (10)

where L is again the size of the superconductor. The above
formula indicates (see also Ref. [21]) that when making the
devices smaller and smaller, there comes a point where the
diffusion-limited regime can no longer be reached, because it
would require dN > L.

Importantly, we can contrast this with the gap-engineered
traps considered here. Due to the perfect interface between
the � and �̃ region, there is no limiting tunneling process.
Moreover, there cannot occur any escape processes as for
normal-metal traps: in the latter case, the trapping can take
place only by relaxation in the normal-metal part of the de-
vice, while for gap-engineered traps both sides of the interface
have the same low gap and therefore trapping due to relaxation
can occur in both the S and S′ parts of the trap. Therefore, the
bottleneck process is necessarily the relaxation of quasiparti-
cles, and its rate is no longer reduced due to escape processes
by

√
kBT/� as for normal-metal traps; indeed, the trapping

rate is given directly by τ−1
r , which is ≈ τ−1

N for � � �̃

[cf. Eq. (3)]. Consequently, we find that the saturation to the

diffusion-limited regime occurs at a different minimal trap
size. As explained above, we can estimate the latter by equat-
ing the results for the density decay rate λ0 in the relaxation
and diffusion-limited cases; see Table I. We find

dS ∼ Dqpτr

L
≈ DqpτN

L
. (11)

Crucially, this means that with gap-engineered traps, one can
achieve the diffusion-limited regime in smaller devices than
would be possible with normal metal traps, since dN/dS ∼√

�/kBT ∼ 10 for typical experimental conditions [40].
We can generalize the above statement to an arbitrary ratio

between d and Lr, where the minimal trap size becomes

dS ≈ Lr tanh−1

(
Dqp

D̃qp

Lr

L

)
. (12)

The above result can be obtained from Eq. (9), by approximat-
ing it in the limit k̃ ≈ 1/Lr and a ≈ L, such that

Lk tan(Lk) ≈ D̃qpL

DqpLr
tanh

(
d

Lr

)
. (13)

The transition from relaxation to diffusion limit occurs when
the right-hand side is ≈1, which is obviously satisfied by dS

in Eq. (12).
Finally, we note that when making the trap region so large

that L − a > a, then the length scale L − a gets replaced by
a, such that the transition from weak to strong (diffusion-
limited) trapping is no longer dependent on L − a. Instead,
the transition occurs at

aS = √
Dqpτr; (14)

that is, the diffusion-limited regime is entered when the region
with higher gap � becomes longer than the diffusion length
scale within that region. We provide the results for the density
decay rate in the various regimes in Table I.

III. DISSIPATION IN A PROXIMITIZED TRAP

While quasiparticle traps improve the qubit relaxation
time, at the same time they may provide new paths for
the dissipation of the qubit energy as well as dephasing.
For normal metal traps, it has been elaborated [27] that the
main mechanisms are either due to ac charge redistribution
within the normal metal or photo-assisted tunneling at the
superconductor-trap interface. While in Ref. [27] we estimate
that both mechanisms are sufficiently low such that they do
not limit the quality factor of the best currently available
qubits, they could impose limitations on future improved
devices. We now show that we expect both mechanisms to
be strongly reduced when using proximitized traps.

A. Dissipation due to ac resistance

The dissipation due to the ac resistance, when redistribut-
ing charges in the circuit, should be strongly reduced: the
here considered gap-engineered traps have a nonzero gap
everywhere, bringing the dc dissipation to zero. There will
remain, however, a residual ac response. We briefly review
the ac response of superconductors to estimate the degree of
dissipation reduction. In the ac case [41,42], we find the real
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part of the conductivity as

Re[σS (ω)]

σN
= 1

ω

∫ ∞

−∞
dε ν(ε, ε + ω)[ f (ε) − f (ε + ω)] ,

(15)

with σN the normal-state conductivity and

ν(ε, ε′) = |εε′ + �̃2|√
ε2 − �̃2

√
ε′2 − �̃2

. (16)

We compute the integral in the limit T � ω � �̃, in which
we find

Re[σS (ω)]

σN
≈ 1

2

(
2�̃

ω

) 3
2

x̃qp , (17)

where x̃qp is the total normalized quasiparticle density in
the proximitized region [obtained by the replacement � →
�̃ in Eq. (1)]. The left-hand side of Eq. (17) is small for
small quasiparticle densities. Consequently, in order to find
the resistivity (that is, the inverse of the conductivity), the
imaginary part of the conductivity is needed. It accounts for
the kinetic inductance and in the limit ω, T � �̃, is given
by [43]

Im[σS]

σN
= π�̃

ω
. (18)

Based on this, we can find the real part of the resistivity, which
we need to estimate the dissipation due to ac currents,

Re[ρ(ω)] = Re[σS (ω)]

|σS (ω)|2 . (19)

Due to x̃qp � 1, Re[σS] � Im[σS], and therefore we find

Re[ρ(ω)] ≈
√

2

π2

√
ω

�̃
x̃qpρN , (20)

which is much smaller than the normal-state resistivity ρN =
1/σN : in the superconducting state, the resistivity is reduced

by both the factor
√

ω/�̃ < 1 and the factor x̃qp � 1. In
practice we expect x̃qp � 10−4, since either injection of quasi-
particles [14] or relatively high temperature (kBT/�̃ > 0.1) is
needed to arrive at such densities, so we can safely deduce
that the ac dissipation is reduced by at least four orders of
magnitude, likely more.

This significant reduction allows for more flexibility re-
garding the trap placement. In particular, it enables the po-
sitioning of quasiparticle traps closer to the active parts of
the circuits, where the evacuation of quasiparticles is crucial.
For normal metal traps, this represented a serious limitation.
Close to the active circuit parts, the electric fields are high
and consequently so are the charge redistribution currents. In
fact, for normal metal traps, we found [27] that when placing
a trap close to these extreme points, the relaxation due to
ac dissipation could give a contribution of the order 10% to
the quality factor of present-day qubits. With the reduction
for gap-engineered traps, we expect that this is no longer a
concern, even if qubits relaxation time is further improved.

transmon SS junction

C C

EJ
EJ

Y (ω) Y (ω)

C0

FIG. 2. Dissipative losses induced by the SS′ trap. We model
both the transmon, as well as the S-S′ junction in terms of resis-
tively shunted LC circuits. The Josephson energies of the respective
junctions are EJ and ẼJ , and the capacitances are denoted as C and
C̃. The dissipation due to quasiparticle tunneling (whereby energy
ω is dissipated) is described through the real admittances Y (ω) and
Ỹ (ω), respectively. The circuits are coupled through the shunting
capacitor C0.

B. Relaxation due to S-S′ tunneling

We now consider the contribution to qubit relaxation from
quasiparticle tunneling between superconductors S and S′. For
this purpose, we treat the transmon as a nearly harmonic LC
oscillator. Within this picture, the dissipation due to quasi-
particle tunneling across the S-S Josephson junction can be
modeled as a resistive shunt. The resulting qubit decay rate,
in the absence of the S-S′ junction, is proportional to the RC
time of the junction, τ−1

qubit ∼ Re[Y (ω0)]/C. Here Y (ω0) is the
admittance of the S-S junction at the qubit frequency ω0 [11]
and C is the corresponding capacitance.

Within the same picture, we can now think of the S-S′ inter-
face as a second LC resonator, coupled to the transmon with a
finite capacitive coupling; see Fig. 2. Similarly, quasiparticles
can tunnel across the S-S′ contact and lead to a resistive shunt;
this approach resembles the one used for tunneling at the N-S
interface of normal-metal traps [27]. As a reminder, in order to
effectively trap quasiparticles, we showed before that a good
interface is advantageous, to create a trap with a sufficiently
low gap. Crucially, the magnitude of the dissipation depends
on the interface quality. In fact, there are several competing
effects. Obviously, an improved interface increases Y due to
the higher tunneling rate and thus increases the dissipation.
Note in particular that the junction conductance can increase
by several orders of magnitude, since in the tunneling regime
the typical transparency is of order 10−5, while it is of order
one for a good contact. On the other hand, a good tunnel
coupling can significantly increase the resonance frequency of
the second oscillator, leading to a very small coupling between
the two circuits, and thus to a decreasing dissipation.

Actually, a further competition occurs concerning the
quasiparticle densities. While a good trap diminishes xqp at
the junction, and thus increases the RC time of the transmon,
the excess quasiparticles will be located within the trap region,
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thus decreasing the RC time of the S-S′ junction. We therefore
want to ensure that the trap does not become a victim of
its own success, by reducing the quasiparticle density at the
active device parts to the extent, where the additional dissipa-
tion caused by the trap could surpass the original dissipative
process at the junction. As we will show in the following, this
is not a concern for realistic parameters.

In order to estimate which of the competing processes
dominates, we deploy for the circuit in Fig. 2 a simplified clas-
sical model. The equations of motion for the phase differences
across the transmon junction (ϕ) and across the S-S′ interface
(ϕ̃) in frequency space are

(M0 − Mdiss)

(
ϕ(ω)

ϕ̃(ω)

)
= 0 (21)

with the matrix M0 describing the dissipationless dynamics of
the circuit

M0 =
(C+C0

2e ω2 − 2eEJ −C0
2e ω

2

−C0
2e ω

2 C̃+C0
2e ω2 − 2eẼJ

)
, (22)

where EJ and C are the Josephson energy and capacitance
of the transmon junction, respectively. The tilde designates
the same parameters for the S-S′ junction. Finally, C0 denotes
the shunting capacitor coupling the two junctions. The matrix
Mdiss takes into account the dissipative part of the dynamics,

Mdiss =
(

i ω
e Y (ω) 0

0 i ω
e Ỹ (ω)

)
. (23)

Here Y and Ỹ are the admittances of the corresponding
Josephson junctions, which (as we see later) depend on the
junction conductances gT and g̃T , respectively [44]. The
Josephson energies can likewise be related to the respective
conductances, EJ = �

8
gT

g0
and ẼJ = �̃

8
g̃T

g0
, where g0 = e2/2π

is the conductance quantum [45]. For a good S-S′ contact, g̃T

can be many orders of magnitudes higher than gT , such that
ẼJ � EJ . We will later discuss how this classical picture can
be justified from a full quantum mechanical model (for details,
see also Appendix B).

From Eq. (21) we find the condition for the resonance
frequencies

α2ω4 =
[
ω2 − 2iω

Y (ω)

C + C0
− ω2

0(1 − α2)

]
×

[
ω2 − 2iω

Ỹ (ω)

C̃ + C0
− ω̃2

0(1 − α2)

]
. (24)

Here the frequencies ω0 = √
8ECEJ and ω̃0 =

√
8ẼCẼJ re-

duce to the resonance frequencies of the two LC circuits in the
absence of coupling and dissipation. The charging energies
are

EC = e2

2

C̃ + C0

CC̃ + [C + C̃]C0
, (25)

ẼC = e2

2

C + C0

CC̃ + [C + C̃]C0
, (26)

and the dimensionless coupling parameter is

α = C0√
(C + C0)(C̃ + C0)

. (27)

We then make two main assumptions. We assume both a small
coupling between the two resonators and a small dissipation
(i.e., transmons with a high quality factor). In this limit, we
expand ω around the transmon’s resonance frequency, ω ≈
ω0 + δω, with a small correction δω � ω0.

This correction has both a real and an imaginary part. The
real part corresponds to merely a small shift of the transmons
resonance frequency, owing to the coupling. It amounts to

Re δω = −1

2

α2ω̃2
0

ω̃2
0 − ω2

0

ω0. (28)

Assuming ω̃0 > ω0, we find that the necessary condition
to justify the perturbative expansion is a sufficiently large
detuning ω̃2

0 − ω2
0 � α2ω̃2

0, which is justified for realistic
parameters (see below). Once this condition is satisfied, it is
easy to see that δω � ω0. In fact, we will show that for our
system ω̃0 � ω0, where the above condition is equivalent to
α � 1.

Under the same assumptions, we receive for the imaginary
part of the correction

Im δω = τ−1
RC + τ̃−1

RC . (29)

The first term in Eq. (29) corresponds to the RC time of the
transmon itself,

τ−1
RC = Re[Y (ω0)]

C + C0
, (30)

where the losses arise from quasiparticles tunneling across the
junction [11]. The second term is the sought after correction,

τ̃−1
RC = α2ω4

0(
ω̃2

0 − ω2
0

)2

Re[Ỹ (ω0)]

C̃ + C0
, (31)

due to quasiparticles tunneling across the S-S′ interface.
In order to proceed, we first need an expression for the

admittances which is valid for both low and high contact trans-
parency, in order to account for the improved S-S′ interface.
We assume for both Y and Ỹ a junction with the same gap
parameter on either side. This means that for the S-S′ junction,
we need to assume a sufficiently strong proximity effect, such
that the gap is equal to �̃ on both sides. In this case, we can
use the general formula provided by Ref. [46],

Re[Y (ω)] =
∑

n

1

ω

e2τn

π

∫ ∞

�

dε ν(ε)ν(ω + ε)

× |zn|2[ f (ε) − f (ω + ε)] (32)

with

ν(ε) = ε
√

ε2 − �2

ε2 − �2
[
1 − τn sin2

(
ϕ

2

)] (33)

and

|zn|2 =
∣∣∣∣∣1 + �2[1 + cos ϕ] − �2

[
1 − τn sin2

(
ϕ

2

)]
ε(ω + ε)

∣∣∣∣∣
2

. (34)
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The two distribution functions f (ε) and f (ε + ω) represent
respectively the absorption and emission of an energy quan-
tum by the quasiparticle reservoir. In order to obtain Ỹ we
simply take above expressions and replace ϕ → ϕ̃, � → �̃,
τn → τ̃n (the latter standing for the channel transparencies of
the S-S′ junction) and f → f̃ (likewise denoting the quasi-
particle distribution function at the S-S′ junction). Note that
the authors in Ref. [46] use a different definition of the phase
difference ϕ than we do. We account for this by dividing their
original result by a factor 2.

In the limit EC � EJ and ẼC � ẼJ , we have both ϕ ≈ 0
and ϕ̃ ≈ 0, in accordance with the above approximation of a
harmonic oscillator close to ground state, and we find

Re[Ỹ (ω)] ≈
∑

n

1

ω

e2τ̃n

π

∫ ∞

�̃

dε
ε√

ε2 − �̃2

ε + ω√
(ε + ω)2 − �̃2

×
∣∣∣∣1 + �̃2

ε(ω + ε)

∣∣∣∣2

[ f (ε) − f (ω + ε)]. (35)

Let us now further assume that the quasiparticle distribution
functions have a finite effective temperature Tqp, such that f
( f̃ ) has only a finite support for ε between � (�̃) and � + Tqp

(�̃ + Tqp). In particular, the validity of this assumption for f̃
has to be discussed with care. We expect it to be valid for
two reasons. First, for the desired regime of a good contact
and a large gap difference, the trapping rate of quasiparti-
cles at energies ∼� approaches the normal metal limit [see
Eq. (3)] and is therefore fast compared to the qubit relaxation
time [19]. Second, even if there remains some occupation of
quasiparticles at energies close to �, it is proportional to the
steady-state occupation at ε ≈ �, which will be smaller than
the steady-state occupation at �̃; the latter relaxes only via
pair annihilation processes, which provide the bottleneck time
scale at low temperatures [34]. Therefore, for the integral over
all energies, such a residual occupation at high energies will
provide but a small correction to Ỹ . In any case, we find

Re[Y (ω)] = 2

ω
�gT

∫ ∞

�

dε
f (ε) − f (ω + ε)√
ε − �

√
ε + ω − �

, (36)

having in addition defined the normal metal conductance as
gT = 2g0

∑
n τn. The expression for Ỹ follows again in anal-

ogy, with the additional replacement gT → g̃T , where g̃T =
2g0

∑
n τ̃n. In fact, we have arrived at the same expression as

in Ref. [11], where it was derived for tunneling SIS junctions.
We thus verified that in the nearly harmonic regime we are
considering, this expression is valid for channels with both
high and low transparency.

To continue, we need to discuss the dependence of the
admittance with respect to the quasiparticle temperature. We
can consider both a regime of “cold” quasiparticles, ω �
Tqp, and “hot” quasiparticles ω � Tqp. The former regime is
simpler, which is why we discuss it first. Here the emission
of energy quanta by the quasiparticle reservoir is suppressed,
and we find

Re[Y (ω)] ≈ 1

2

(
2�

ω

) 3
2

gT xqp, (37)

which is in accordance with the expression found in [11]. In
fact, with Y and Ỹ in the limit of cold quasiparticles, it is

possible to show that the RC times in Eqs. (30) and (31) follow
directly from the full quantum mechanical calculation, shown
in Appendix B.

Recent measurements of transmon transition rates [47]
have been interpreted in terms of hot nonequilibrium quasi-
particles, although a more likely explanation is in terms of
photon-assisted Cooper pair breaking [48]. In any case, if
there are hot quasiparticles (in or out of equilibrium), the
emission process can no longer be ignored. What is more,
the classical picture breaks down, a fact we have already
discussed in the different context of a model for normal-metal
traps [27]. Hence, the circuit relaxation time can no longer be
strictly considered an RC time. One can nonetheless restore
an effectively classical model with a modified admittance,
Ymod, where the absorption and emission processes are added
instead of subtracted, as in Eq. (36). One can justify this
procedure by noting that in the actual quantum mechanical
model there occur the rates of qubit relaxation �1→0 and
excitation �0→1. The relaxation rate of the qubit is then given
by the sum, τ−1 = �1→0 + �0→1. We provide more details on
this argument in Appendix B. For the modified admittance,
with ω � Tqp, we find

Re[Ymod(ω)] ≈
√

ω

4Tqp
ln

(
4Tqp

ω

)(
2�

ω

) 3
2

gT xqp. (38)

We see that this result differs from the cold quasiparticle
result, Eq. (37), merely by a prefactor ln(r)/

√
r, depending on

the ratio r = 4Tqp/ω0, which contains no parameters specific
to the S-S′ junction; i.e., it is the same for both Y and Ỹ . This
will simplify the discussion at the end of this section.

Finally, we need to provide estimates for the capacitances.
First, both C and C0 are coplanar capacitors, with different
distances between the two plates, D for C and D + a for C0;
see also Fig. 1(a). Consequently, we can approximate their ra-
tio by means of the electrostatic result for coplanar capacitors
(see Appendix C). In order to determine C, we compute the
relation between the accumulated charge across the transmon
junction with respect to an applied voltage difference V , such
that

C ≈ ε0

π
W ln

(
4L

D

)
, (39)

valid for D � L. With W we denote the width of the super-
conducting plates and with ε0 the vacuum permittivity. Note
that due to the logarithmic dependence on L/D, this geometric
factor contributes but a numerical prefactor, which we can
discard for our estimate, C ∼ εW . As for the capacitance C0,
we may in principle take into account that the trap part can
have a varying length L − a; it can be either close to L, such
that a � D and D + a � L − a, or we could also consider a
small trap D + a � L − a. However, both scenarios provide
again only a logarithm of geometric factors, such that likewise
C0 ∼ εW . We observe, that while C is generally larger than
C0, the two are realistically within one order of magnitude of
each other (see Appendix C). We therefore use C ∼ C0 in the
following.

Concerning the capacitance of the second oscillator C̃, we
treat it likewise as a geometric capacitance. However, unlike
the previous two capacitances, we here assume that the S′
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layer is grown on top of the S layer, such that we have an
ordinary parallel plate capacitor,

C̃ = ε0Ã

d
, (40)

with Ã = W (L − a) being the contact area, and d the thick-
ness of the barrier between the two layers. (see Fig. 1).
Because of the good S-S′ contact, d is very small, L − a � d ,
such that we find C̃ � C, C0, irrespective of the geometric
details. As a consequence, we have α ∼

√
C/C̃ � 1, because

of the dominant C̃. This validates our initial hypothesis of the
circuits being weakly coupled, in spite of C ∼ C0.

Having expressions for the capacitances in our hands, we
now proceed by comparing the resonance frequencies of the
two oscillators. Importantly, both C̃ � C and ẼJ � EJ , such
that it is not yet obvious whether ω̃0 is much larger than ω0

or not. As for the first factor, we expect d to be at most
on the nanometer scale, whereas L − a can be as large as
hundreds of micrometers to a millimeter, resulting in C̃/C �
106. As for the Josephson energies, we estimate their ratio as
follows. We use the relation between the Josephson energies
and their respective contact conductances, given above. We
therefore need to estimate the ratio gT /̃gT . In order to do so,
let us assume for simplicity that all channels have roughly the
same transparency, such that gT /g0 ≈ Nch〈τ 〉, where Nch is the
number of channels, and 〈τ 〉 is the average over the channel
ensemble of the transmission probabilities (and similarly for
g̃T ). For weakly coupled tunnel junctions, we take 〈τ 〉 ∼ 10−5

[19]; this estimates applies to gT . For very good contacts (i.e.,
for g̃T ) on the other hand, 〈τ 〉 should in principle be much
larger, of the order 10−1 to 1; this is needed to ensure strong
proximity effect, and it is confirmed by experiments [49,50].
In order to estimate the ratio of channel numbers, we note that
the number of channels scales with the contact area, such that
Nch/Ñch = A/Ã, where A is the contact area of the transmon
junction. This ratio depends strongly on the transmon and trap
geometry. Typically, A ∼ (0.1 μm)2. For a small trap, Ã could
be as low as 10 μm × 100 μm. A large trap, covering a good
portion of the transmon, can be at least one order of magnitude
larger (∼100 μm × 100 μm). Let us take the small trap and
〈̃τ 〉 ∼ 10−1 as an upper bound for the ratio, such that

gT

g̃T
< 10−9. (41)

The ratio EJ/ẼJ between the Josephson energies may have a
slightly less stringent upper bound, due to the additional factor
�/�̃ > 1; however, the two energy gaps will differ in practice
by at most one order of magnitude, since we require ω0 < 2�̃

to avoid pair-breaking processes. Consequently, we find that

ω̃0

ω0
> 10, (42)

indicating that the increase of the contact conductance is
the dominating effect. This means that the first excited state
of the transmon remains the lowest energetically accessible
state, such that we do not have to concern ourselves with
any relaxation process of the qubit through exciting the SS′
oscillator.

Finally, we have all elements at disposal to estimate the RC
times. We first discuss the contribution of the S-S′ junction, in

particular its dependence on the junction conductance. Due to
ω̃0 � ω0 and C̃ � C ∼ C0, we find

τ̃−1
RC ∼ 1

C

√
�

�̃

gT

g̃T

(
�

ω0

) 3
2

gT x̃qp. (43)

We note that the above result is correct as such for cold
quasiparticles, whereas for the hot regime we would have to
include the prefactor depending on Tqp/ω0, as identified in
Eq. (38). We discard it for lack of relevance: as mentioned
right after Eq. (38), this prefactor does not depend on junction
specific parameters (that is, it is independent of g̃T ). With
the above result, we can answer the first question whether
an increase in the interface quality increases or decreases
the qubit relaxation rate. As we see, even though the admit-
tance increases linearly with g̃T , the prefactor 1/ω̃4

0 ∼ 1/̃g2
T

decreases faster than that; hence the positive effect of the
decoupling due to frequency mismatch dominates over the
negative effect of the increased tunneling rate. Improving the
S-S′ interface is therefore beneficial.

We now compare the two RC times, in order to ensure
that τ̃RC > τRC . As mentioned above, otherwise we would
encounter a counterproductive case where the trap dissipation
due to quasiparticle tunneling would be larger than the orig-
inal quasiparticle process the trap was designed to mitigate.
The RC time of the transmon can likewise be expressed in
terms of circuit parameters and quasiparticle density as (for
cold quasiparticles)

τ−1
RC ∼ 1

C

(
�

ω0

) 3
2

gT xqp. (44)

Through this, we find

τRC

τ̃RC
∼

√
�

�̃

gT

g̃T

x̃qp

xqp
. (45)

This result is valid for both cold and hot quasiparticles [as
the prefactor identified in Eq. (38) drops out from the ratio].
Importantly, the ratio between the two RC times has both large
and small factors. While the ratio of gaps satisfies

√
�/�̃ >

1, it will not be a significant factor and can be simplified to
∼1. The improved contact conductance works in our favor
and provides a factor of at least 10−9; see Eq. (41). As far
as the quasiparticle density is concerned, it has been shown
[21] that a good trap can reduce xqp at the junction by about
two orders of magnitude with respect to the stationary density
xst

qp in the absence of the trap [51]; that is, for a typical
value xst

qp ∼ 10−6 we can expect ideally xqp ∼ 10−8 at the
junction. The quasiparticle density at the S-S′ junction x̃qp on
the other hand can be significantly higher than xst

qp. After all,

the trap has a lower gap, �̃ < � and is designed to attract
and collect nonequilibrium quasiparticles from all over the
device, which recombine very slowly. However, in order to
reach the regime τ−1

RC ∼ τ̃−1
RC , x̃qp would have to be larger than

unity, implying the full suppression of superconductivity in
the trap. We expect this to be very far from a realistic sce-
nario for transmon qubits: as we have already noted, even in
experiments with quasiparticle injection, the nonequilibrium
quasiparticle density accumulated at the junction does not
exceed 10−3 [14,19]. We can therefore safely conclude that
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τ̃RC � τRC . Consequently, the dissipation due to quasiparticle
tunneling across the S-S′ junction cannot severely impede
the qubit quality factor, in spite of the increased contact
conductance and the high quasiparticle density in the trap. The
same conclusion is also reached, using Eq. (41) in Eq. (45), in
the limiting case of an ineffective trap with �̃ → �, in which
relaxation cannot take place and hence x̃qp = xqp. We finally
note that even for traps as short as a fraction of a micron, our
result still holds.

IV. SUMMARY

We have theoretically examined the quasiparticle dynamics
and dissipative processes of gap-engineered traps in transmon
qubits. In our model, the gap engineering is realized through
the proximity effect, by coupling a second, lower gap su-
perconductor to the transmon, with a good contact of high
transparency.

We have identified several advantages with respect to
normal-metal traps studied in earlier works. As far as the
quasiparticle diffusion is concerned we have predicted that
gap-engineered traps, unlike normal-metal traps, do not suf-
fer from quasiparticle backflow (i.e., escape from the trap
back to the qubit). As a consequence, the minimal trap size
above which the traps are in a regime of strong and efficient
quasiparticle evacuation is reduced. Therefore, strong gap-
engineered traps are available for even smaller devices, so that
the present proposal should be viable not only for 3D trans-
mons as considered here, but also C-shunted flux qubits [52]
and X-mons [53]. For qubits comprising only small islands,
such as a “regular” (not shunted) flux qubit or a fluxonium
with the superinductor implemented via a junction array [3],
the design considered is likely difficult to implement directly,
since the minimal trap size is of the order of the typical island
size; still, our approach could be used in devices coupled to
radiation via a larger antenna [54]. Similarly, in devices based
on proximitized nanowires such as Andreev level qubits [55]
(which can be “poisoned” by a single quasiparticle), the fab-
rication of traps on the nanowire itself could be challenging,
but they could be useful in the superconductors contacting the
nanowire. We also note that alternatives to quasiparticle traps
are already under consideration, such as quasiparticle pump-
ing [24] to expel quasiparticles from the small islands, phonon
traps [56] which can reduce the generation rate of quasiparti-
cles, and “quasiparticle filters” for nanowire devices [57].

Concerning dissipative processes, we have studied the ac
resistivity of the bulk superconductor and found that the
resistivity drops by many orders of magnitudes with respect to
the normal metal case. Consequently, bulk dissipation arising
due to charge redistribution, which was a critical issue for
normal metal traps, is no longer of any concern. Finally,
we have investigated losses due to quasiparticle tunneling at
the proximity interface. We have found that even though the
admittance of the interface increases significantly, due to the
combination of a good contact and an increased quasiparticle
density in the trap region, the overall influence of the trap is
negligible. The main reason for this is that a good contact
strongly detunes the transmon and trap resonance frequen-
cies, and effectively decouples the two. Given the above
advantages, we come to the conclusion that gap engineering

may be the preferable strategy to implement quasiparticle
traps.
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APPENDIX A: JUSTIFICATION OF DIFFUSION
EQUATION FROM MICROSCOPIC EQUATIONS

In the main text, we provide heuristic boundary conditions
for the quasiparticle density xqp at the trap edge, where the
order parameter drops. We here show how to justify these
boundary conditions from a microscopic vantage point.

For a proximitized piece of a dirty superconductor with an
inhomogeneous gap parameter �(x), the diffusion equation
providing the dynamics of the quasiparticle occupation num-
ber as a function of energy fqp(ε) can be given as [29]

ḟqp(ε, y) = ∂y[Dqp(ε, y)∂y fqp(ε, y)], (A1)

where we assume that the charge imbalance contribution is
negligible. In the above equation, the inhomogeneous gap
�(y) enters through the y-dependent diffusion coefficient
Dqp(ε, y) = D0/νBCS(ε), where D0 is the normal state diffu-
sion coefficient, and νBCS(ε) = ε/

√
ε2 − �2(y) is the normal-

ized BCS density of states.
We know that the gap parameter for a proximitized slab

of superconductor varies on the length scale given by the
superconducting coherence length ξ (see, e.g., Ref. [58]),
which is much smaller than the length scales relevant for the
diffusion of quasiparticles. We can therefore separate above
equation into two parts with a constant gap, a first part for 0 <

y < a with gap �(y) = � and a second part for a < y < L
with �(y) = �̃ (we assume a, L − a � ξ ). The region where
the gap abruptly jumps can now be incorporated through
the boundary conditions [which are straightforwardly derived
from Eq. (A1)],

f −
qp(ε) = f +

qp(ε), (A2)

D−
qp(ε)∂y f −

qp(ε) = D+
qp(ε)∂y f +

qp(ε), (A3)

with the notation q− = q|y=a−0+ and q+ = q|y=a+0+ . We stress
that in Eq. (A3), the diffusion constant does not cancel,
because it is not the same for y = a − 0+ and y = a + 0+.

We note that the derivation of an effective boundary for xqp

based on above Eqs. (A2) and (A3) is not trivial, due to the
density of states being position dependent. We can however
use a certain set of assumptions on the function fqp through
which we can still find an effective boundary condition for
xqp. The procedure goes as follows.

First, we assume that the quasiparticle distribution function
can be written as a product, fqp(ε, y) = g(�ε) ∗ h(y), where
�ε = ε − �(y). We furthermore assume that g(�ε) has a
finite support within the window 0 < �ε < kBTqp, which we
refer to as the quasiparticle temperature Tqp. We focus on the
regime of cold quasiparticles, kBTqp � �(y) (we note that
this set of approximations has already been proven useful
when describing experiments; see, e.g., [19]). For the free

144514-9



R.-P. RIWAR AND G. CATELANI PHYSICAL REVIEW B 100, 144514 (2019)

and the proximitized parts we get independently the diffusion
equations on either side of y = a as

ẋqp(y) = D∓
qp∂

2
y xqp(y), (A4)

where the phenomenological diffusion coefficient is given as

D∓
qp =

∫ ∞
�∓ dενBCS(ε)g(ε − �∓)Dqp(ε)∫ ∞

�∓ dενBCS(ε)g(ε − �∓)
, (A5)

with �− = � and �+ = �̃, for y < a and y > a, respec-
tively. Under the above assumptions, we indeed find D−

qp �
D+

qp. We can show this explicitly, by making the crude sim-
plification, g(�ε) ≈ θ (�ε)θ (kBTqp − �ε), such that D∓

qp ∼√
kBTqp/�∓D0. We stress, however, that the above result

holds qualitatively (up to numerical prefactors) also for more
realistic assumptions for g, as long as g does not have a too
pronounced energy dependence (apart from the cutoff).

We now derive explicitly the boundary conditions. We
choose to multiply Eqs. (A2) and (A3) with the BCS den-
sity of states on the nonproximitized side, where �(y) = �,
because xqp at the junction is of most interest to us. Under
the same assumptions as above, integrating the resulting equa-
tions provides us with the following expressions:

x−
qp =

√
2

√
�2 − �̃2

�Tqp
x+

qp, (A6)

D−
qp∂yx−

qp =
√

2

√
�2 − �̃2

�Tqp
D+

qp∂yx+
qp. (A7)

To arrive at above equations, we have furthermore assumed
that Tqp � � − �̃. Importantly, both Eqs. (A6) and (A7)
contain the same correction prefactor. We can thus conclude
that the heuristic boundary condition given in the main text,
Eq. (7), can be justified from the microscopic starting point
here, Eq. (A1), when renormalizing xqp for y > a by this
prefactor.

APPENDIX B: DISSIPATION DUE TO PHOTO-ASSISTED
TUNNELING IN THE QUANTUM CIRCUIT APPROACH

In the main text, we deploy a classical model for the
dynamics of the transmon with an SS′ trap, as coupled LC
circuits. Here, we indicate how one can justify the classical
model by means of a full quantum mechanical model.

For this purpose, we first compute the nondissipative part
of the dynamics, disregarding the effects of the quasiparticles.
Our starting point is the Lagrangian for the phase differences
ϕ and ϕ̃ across the transmon and S-S′ junction, respectively,

L = 1

2

C

(2e)2 ϕ̇2 + EJ cos (ϕ)

+ 1

2

C̃

(2e)2
˙̃ϕ

2 +
∑

n

�̃

√
1 − τn sin2

(
ϕ̃

2

)
+ 1

2

C0

(2e)2 (ϕ̇ − ˙̃ϕ)2, (B1)

with the same capacitances as in the model given in Fig. 2.
We perform the Legendre transformation to arrive at the

Hamiltonian. The variables conjugate to the phase difference
operators are

n = ∂L

∂ϕ̇
= C + C0

(2e)2 ϕ̇ − C0

(2e)2
˙̃ϕ, (B2)

ñ = ∂L

∂ ˙̃ϕ
= C̃ + C0

(2e)2
˙̃ϕ − C0

(2e)2 ϕ̇, (B3)

with the quantization conditions [n, ϕ] = i and [̃n, ϕ̃] = i,
respectively. Furthermore, we assume small phase differences
ϕ ≈ 0 and ϕ̃ ≈ 0. Thus we arrive at a system of two coupled
harmonic oscillators,

H = 1
2 ECn2 + 1

2 EJϕ
2 + 1

2 ẼCñ2 + 1
2 ẼJ ϕ̃

2 + EC0 ñn, (B4)

with

EC = (2e)2 C̃ + C0

CC̃ + [C + C̃]C0
, (B5)

ẼC = (2e)2 C + C0

CC̃ + [C + C̃]C0
, (B6)

EC0 = (2e)2 C0

CC̃ + [C + C̃]C0
. (B7)

Here to simplify the comparison with textbook formulas
for the harmonic oscillator, we use a different definition of
charging energies compared to the standard one adopted in
the main text. With these definitions, we see that the harmonic
oscillator approximation is valid for EC � EJ as well as ẼC �
ẼJ (we remind readers that ẼJ = �̃/4

∑
n τn). We continue by

introducing ladder operators for the harmonic oscillators,

n = i√
2

(
EJ

EC

)1/4

(a† − a), (B8)

ϕ = 1√
2

(
EC

EJ

)1/4

(a† + a). (B9)

The operators ñ and ϕ̃ are obtained in analogy, by replacing
EC → ẼC and EJ → ẼJ . We arrive at

H = ω0

(
a†a + 1

2

)
+ ω̃0

(̃
a†ã + 1

2

)
− 1

2
α
√

ω0ω̃0(a† − a)(̃a† − ã) (B10)

with

α = EC0√
ECẼC

= C0√
(C + C0)(C̃ + C0)

, (B11)

just as in the classical equation in the main text, Eq. (27).
The eigenstates for zero coupling can be denoted as |m, m̃〉 =
(a†)m (̃a†)m̃|0, 0〉, where |0, 0〉 is the ground state without
excitations.

We now perform a perturbation theory for a small coupling
parameter, α � 1. In lowest order, we receive the corrections
for the general circuit states

|m, m̃〉 → |m, m̃〉 + |δm,m̃〉. (B12)

144514-10
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The corrections have the following nonzero elements:

〈m + 1, m̃ + 1|δm,m̃〉 = α

2

√
ω0ω̃0

√
(m + 1)(m̃ + 1)

ω̃0 + ω0
, (B13)

〈m + 1, m̃ − 1|δm,m̃〉 = α

2

√
ω0ω̃0

√
(m + 1)m̃

ω̃0 − ω0
, (B14)

〈m − 1, m̃ + 1|δm,m̃〉 = −α

2

√
ω0ω̃0

√
m(m̃ + 1)

ω̃0 − ω0
, (B15)

〈m − 1, m̃ − 1|δm,m̃〉 = −α

2

√
ω0ω̃0

√
mm̃

ω̃0 + ω0
. (B16)

We now have all ingredients at hand to compute the dissipa-
tion due to quasiparticles. We are in particular interested in
transitions between the qubit states,

|00〉, |10〉 = a†|00〉, (B17)

assuming that the SS′ resonator remains in its ground state.
This is a realistic assumption, since ω0 � ω̃0. As shown,
e.g., in Ref. [11], the quasiparticle tunneling process couples
to the operators sin(ϕ/2) (for tunneling across the transmon
junction) or sin(̃ϕ/2) (across the SS′ junction). In the limit of
harmonic dynamics, it suffices to consider the approximation
sin(ϕ/2) ≈ ϕ/2 (and likewise for ϕ̃). We then receive

|〈10|ϕ|00〉|2 ≈ 1

2

EC

ω0
, (B18)

|〈10|̃ϕ|00〉|2 ≈ 1

2

ẼC

ω0

α2ω4
0(

ω̃2
0 − ω2

0

)2 , (B19)

up to leading order in the respective transition matrix ele-
ments. We note that within the approximation α � 1, the
respective charging energies reduce to EC ≈ (2e)2/(C + C0)
and ẼC ≈ (2e)2/(C̃ + C0). Already on this level we see the
appearance of the same prefactor structure as in the classical
equation in the main text, Eq. (31).

In order to arrive at the full RC time including the quasipar-
ticle density, we follow Ref. [11], where it is shown how the
above computed transition matrix element enters in the total
transition rate. Namely, the transition rates are

�1→0 = 1
4 |〈10|ϕ|00〉|2Sqp(ω0), (B20)

�̃1→0 = 1
4 |〈10|̃ϕ|00〉|2S̃qp(ω0), (B21)

with

Sqp(ω) ≈ 16EJ

π

∫ ∞

�

dε
fqp(ε)√

ε − �
√

ε + ω − �
, (B22)

S̃qp(ω) ≈ 16ẼJ

π

∫ ∞

�̃

dε
f̃qp(ε)√

ε − �̃
√

ε + ω − �̃
. (B23)

In the reversed rates �0→1 and �̃0→1, there enter the time-
reversed correlation functions,

Srev
qp (ω) ≈ 16EJ

π

∫ ∞

�

dε
fqp(ε + ω)√

ε − �
√

ε + ω − �
, (B24)

S̃rev
qp (ω) ≈ 16ẼJ

π

∫ ∞

�̃

dε
f̃qp(ε + ω)√

ε − �̃
√

ε + ω − �̃
. (B25)

Note that we chose ω > 0 by default. The remaining task is to
relate the quasiparticle correlation functions to the admittance.

They are generally related to each other as

Sqp(ω) − Srev
qp (ω) = 2ω

π

ReY (ω)

g0
, (B26)

and similarly for Ỹ . Let us now again assume that the quasi-
particles occupy a finite energy window, given by the effective
quasiparticle temperature Tqp. If the quasiparticles are cold
with respect to the qubit energy scale, ω0 � Tqp, then we can
neglect excitation processes, and the above relation simplifies
to the so-called “high-frequency” case,

Sqp(ω) ≈ 2ω

π

ReY (ω)

g0
. (B27)

We finally get

�1→0 = 1

4

EC

π

ReY (ω0)

g0
, (B28)

�̃1→0 = 1

4

ẼC

π

α2ω4
0(

ω̃2
0 − ω2

0

)2

ReỸ (ω0)

g0
, (B29)

which can easily be identified as the respective RC times in
the main text; see Eqs. (30) and (31).

As already pointed out in the main text, the quasiclas-
sical approximation fails with certainty, if the quasiparticle
distribution is hot, ω < Tqp. Here we justify the appearance
of the modified admittance introduced in the main text, by
means of the here described transition rates. We note that we
have already commented on a similar scenario in a previous
paper [27]. In essence, for hot quasiparticles, both the qubit
relaxation and excitation are equally probable, Sqp ≈ Srev

qp .
The decay rate of the qubit system can now be captured by
the “new” RC time, τ−1

RC = �1→0 + �0→1. This justifies the
definition of a modified admittance

Re[Y mod(ω)] = 2�

ω
gT

∫ ∞

�

dε
f (ε) + f (ω + ε)√
ε − �

√
ε + ω − �

(B30)

(and likewise for τ̃RC), where the two fermi functions at dif-
ferent energies are added rather than subtracted. This equation
gives rise to Eq. (38).

APPENDIX C: DERIVATION OF COPLANAR
CAPACITANCES

We here derive the capacitances of finite size coplanar ca-
pacitors, as used in the main text. This calculation is a general-
ization of the result obtained in Ref. [27], where the coplanar
capacitors were semi-infinite. We start from infinitesimally
thin plates in the z direction (positioned at z = 0), infinitely
large in x and with finite size in the y direction. The distance
of the two plates is given by D and their length as L (see also
Fig. 1). We choose to set the origin of y in the middle of the
two plates, such that there is a left plate for −L − D/2 <

y < −D/2 and a right plate for D/2 < y < D/2 + L. This
problem can be mapped to a parallel plate capacitor through
the conformal map,

ζ = K
∫ τ

dω
1√

ω2 − 1
√

(l + 1)2 − ω2
, (C1)

where τ = 2(x + iz)/D is the target space of the coplanar
capacitors, and ζ is the map to the space of the parallel plate

144514-11



R.-P. RIWAR AND G. CATELANI PHYSICAL REVIEW B 100, 144514 (2019)

capacitor, with the prefactor K to be determined below. We
defined furthermore l = 2L/D. We identify the integral as the
incomplete elliptic integral of the first kind, defined as

F

(
τ

l + 1
; l + 1

)
=

∫ τ
l+1

0
dt

1√
1 − t2

√
1 − (l + 1)2t2

,

(C2)

such that

ζ (τ ) = iKF

(
τ

l + 1
; l + 1

)
. (C3)

The elliptic integral has the following asymptotic behaviors.
For l � 1,

F

(
τ

l + 1
; l + 1

)
→ i

π

2

1

(l + 1)
, (C4)

whereas for l � 1,

F

(
τ

l + 1
; l + 1

)
≈ 1

2
ln

(
1

L

)
. (C5)

We now need to fix the prefactor K . We do so by demanding
that the point y + iz = D/2, that is, τ = 1, on the coplanar
capacitor corresponds to the point ζ = i/2 in the parallel
capacitor space

ζ (τ = 1)
!= i

2
, (C6)

resulting in

K = 1

2F
(

1
l+1 ; l + 1

) . (C7)

Eventually, in order to compute the capacitance, we need to
know the surface charge on the capacitor plates. We find them
as follows. We first solve the parallel plate capacitor in ζ space
for a given voltage difference. In this space, the solution of the
potential is simply

ϕ′(ζ ) = −V Im[ζ ], (C8)

assuming that the parallel plates are situated at Im ζ = −1/2
and Im ζ = 1/2. This is translated to the coplanar capacitor
in τ space as ϕ(τ ) = ϕ′[ζ (τ )]. The surface charge σ is then
given in the standard way as the normal component of the
electric field,

σ (y) = ε0En(y) = −ε0 lim
δ→0

ϕ(τ + iδ) − ϕ(τ )

δ

∣∣∣∣
τ=2y/D

(C9)

with ε0 the vacuum permittivity. We receive

σ (y) = ε0V

2F
(

1
2L
D +1

; 2L
D + 1

) 1√
y2 − (

D
2

)2
√(

D
2 + L

)2 − y2
.

(C10)

In the limit of infinitely large capacitor plates, L � D/2, we
recover our result from Ref. [27]

σ (y) ≈ ε0V

π

1√
y2 − (

D
2

)2
. (C11)

This is the result we need to estimate the transmon capacitance
C and the cross capacitance C0 for large traps. The opposite
limit of L � D/2 can be used to estimate the cross capaci-
tance C0 of small traps, where

σ (y) ≈ ε0V

2 ln
(

D
2L

) 1√
y − D

2

√
D
2 + L − y

. (C12)

A coplanar capacitance Cco can be found in the standard
way, by taking the ratio between the total charge stored in the
capacitor and the voltage difference. In order to regularize the
total charge, we introduce the finite (but large) plate width W
in the x direction, such that

Cco = Qco

V
=

∫ W
0 dt

∫ L+ D
2

D
2

dy σ (y)

V
. (C13)

For large plates we thus receive

Cco ≈ ε0

π
W ln

(
4L

D

)
. (C14)

For small plates, the capacitance is

Cco ≈ π

2
ε0

W

ln
(

D
2L

) . (C15)

Note that this result does not precisely correspond to the
cross conductance C0 for small traps. Namely, in this
Appendix we consider symmetric coplanar capacitors. The
actual setup treated in the main text is in contrast an asymmet-
ric coplanar capacitor, where charges are separated between a
large transmon plate and a small trap plate. However, we note
that the capacitance of both the small and large (symmetric)
coplanar capacitors provides the same scaling, differing only
up to logarithmic factors. We can likewise see when doing the
spatial integral exactly, that even when crossing over from one
regime to the other there appear no additional scaling factors
other than W . We have therefore no reason to expect that
the scaling will be different for the asymmetric case, both on
physical grounds as well as from the above scaling argument.

Finally, let us comment on the assumption C ∼ C0 used
in Sec. III. Equation (C14) applies to both C and C0 if, for
the latter, D + a � L − a and the substitutions L → L − a
and D → D + a are made; then we immediately see that
C/C0 � 1. In the opposite regime D + a � L − a, we must
use Eq. (C15) for C0 (again with the above substitutions);
realistically, even for long plates at a typical distance (L =
500 μm, D = 30 μm) and a very small trap L − a = 1 μm),
we estimate C/C0 
 4.7, therefore justifying the assumption
C ∼ C0.
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