001     866005
005     20220930130221.0
024 7 _ |a 10.1007/s00396-019-04567-6
|2 doi
024 7 _ |a 0023-2904
|2 ISSN
024 7 _ |a 0303-402X
|2 ISSN
024 7 _ |a 0368-6590
|2 ISSN
024 7 _ |a 0372-820X
|2 ISSN
024 7 _ |a 1435-1536
|2 ISSN
024 7 _ |a 2128/23460
|2 Handle
024 7 _ |a WOS:000492635300001
|2 WOS
037 _ _ |a FZJ-2019-05265
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gvaramia, Manuchar
|0 P:(DE-Juel1)166308
|b 0
245 _ _ |a Tunable viscosity modification with diluted particles: when particles decrease the viscosity of complex fluids
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1586005206_29482
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While spherical particles are the most studied viscosity modifiers, they are well known only to increase viscosities, in particular at low concentrations of approx. 1%. Extended studies and theories on non-spherical particles in simple fluids find a more complicated behavior, but still a steady increase with increasing concentration. Involving platelets in combination with complex fluids – in our case a bicontinuous microemulsion – displays an even more complex scenario that we analyze experimentally and theoretically as a function of platelet diameter using small angle neutron scattering, rheology and the theory of the lubrication effect, to find the underlying concepts. The clay particles effectively form membranes in the medium that itself may have lamellar aligned domains and surfactant films in the case of the microemulsion. The two-stage structure of clay and surfactant membranes explains the findings using the theory of the lubrication effect. This confirms that layered domain structures serve for lowest viscosities. Starting from these findings and transferring the condition for low viscosities to other complex fluids, namely crude oils, even lowered viscosities with respect to the pure crude oil were observed. This strengthens our belief that also here layered domains are formed as well. This apparent contradiction of a viscosity reduction by solid particles could lead to a wider range of applications where low viscosities are desired. The same concepts of two-stage layered structures also explain the observed conditions for extremely enhanced viscosities at particle concentrations of 1% that may be interesting for the food industry.
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 2 7 |a Industrial Application
|0 V:(DE-MLZ)SciArea-150
|2 V:(DE-HGF)
|x 1
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS3-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|x 1
700 1 _ |a Mangiapia, Gaetano
|0 P:(DE-Juel1)166565
|b 1
700 1 _ |a Pipich, Vitaliy
|0 P:(DE-Juel1)130893
|b 2
|u fzj
700 1 _ |a Appavou, Marie-Sousai
|0 P:(DE-Juel1)130507
|b 3
|u fzj
700 1 _ |a Jaksch, Sebastian
|0 P:(DE-Juel1)157910
|b 4
|u fzj
700 1 _ |a Holderer, Olaf
|0 P:(DE-Juel1)130718
|b 5
|u fzj
700 1 _ |a Rukhadze, Marina D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 7
|e Corresponding author
773 _ _ |a 10.1007/s00396-019-04567-6
|0 PERI:(DE-600)1462029-7
|n 11-12
|p 1507-1517
|t Colloid & polymer science
|v 297
|y 2019
|x 1435-1536
856 4 _ |u https://juser.fz-juelich.de/record/866005/files/152-SI.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866005/files/Rg%20Springer.pdf
856 4 _ |u https://juser.fz-juelich.de/record/866005/files/152-SI.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866005/files/Gvaramia2019_Article_TunableViscosityModificationWi.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866005/files/Rg%20Springer.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/866005/files/Gvaramia2019_Article_TunableViscosityModificationWi.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866005
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:MLZ
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130893
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130507
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157910
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130646
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COLLOID POLYM SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21