000866007 001__ 866007
000866007 005__ 20250129094349.0
000866007 0247_ $$2doi$$a10.1103/PhysRevB.100.134420
000866007 0247_ $$2ISSN$$a0163-1829
000866007 0247_ $$2ISSN$$a0556-2805
000866007 0247_ $$2ISSN$$a1050-2947
000866007 0247_ $$2ISSN$$a1094-1622
000866007 0247_ $$2ISSN$$a1095-3795
000866007 0247_ $$2ISSN$$a1098-0121
000866007 0247_ $$2ISSN$$a1538-4489
000866007 0247_ $$2ISSN$$a1550-235X
000866007 0247_ $$2ISSN$$a2469-9950
000866007 0247_ $$2ISSN$$a2469-9969
000866007 0247_ $$2Handle$$a2128/23165
000866007 0247_ $$2altmetric$$aaltmetric:68374137
000866007 0247_ $$2WOS$$aWOS:000489820500006
000866007 037__ $$aFZJ-2019-05267
000866007 082__ $$a530
000866007 1001_ $$0P:(DE-Juel1)167574$$aJi, W. H.$$b0
000866007 245__ $$aNoncollinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co 2 V 2 O 7g4
000866007 260__ $$aWoodbury, NY$$bInst.$$c2019
000866007 3367_ $$2DRIVER$$aarticle
000866007 3367_ $$2DataCite$$aOutput Types/Journal article
000866007 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585999448_29484
000866007 3367_ $$2BibTeX$$aARTICLE
000866007 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866007 3367_ $$00$$2EndNote$$aJournal Article
000866007 520__ $$aCo2V2O7 was recently reported to exhibit remarkable magnetic-field-induced magnetization plateaus and ferroelectricity [R. Chen et al., Phys. Rev. B 98, 184404 (2018)], but its magnetic ground state remains ambiguous. Magnetometry measurements and time-of-flight neutron powder diffraction (NPD) have been employed to study the structural and magnetic properties of Co2V2O7, which includes two nonequivalent Co sites. Upon cooling below the Néel temperature TN=6.0(2) K, we observe magnetic Bragg peaks at 2 K in NPD, which indicates the formation of long-range magnetic order of Co2+ moments. After symmetry analysis and magnetic structure refinement, we demonstrate that Co2V2O7 possesses a complicated noncollinear magnetic ground state with Co moments mainly located in the b-c plane and forming a noncollinear spin-chain-like structure along the c-axis. The ab initio calculations demonstrate that the noncollinear magnetic structure is more stable than various ferromagnetic states at low temperature. The noncollinear magnetic structure with a canted ↑↑↓↓ spin configuration is considered to be the origin of magnetoelectric coupling in Co2V2O7 because the inequivalent exchange striction induced by the spin-exchange interaction between the neighboring spins could be the driving force of ferroelectricity. It is also found that the deviation of lattice parameters a and b is opposite below TN, while the lattice parameter c and β stay almost constant below TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.
000866007 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000866007 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000866007 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000866007 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000866007 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000866007 542__ $$2Crossref$$i2019-10-14$$uhttps://link.aps.org/licenses/aps-default-license
000866007 588__ $$aDataset connected to CrossRef
000866007 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000866007 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000866007 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000866007 7001_ $$0P:(DE-HGF)0$$aYin, L.$$b1
000866007 7001_ $$0P:(DE-HGF)0$$aZhu, W. M.$$b2
000866007 7001_ $$00000-0002-8867-8291$$aKumar, C. M. N.$$b3
000866007 7001_ $$0P:(DE-Juel1)172659$$aLi, Cheng$$b4
000866007 7001_ $$0P:(DE-Juel1)144092$$aLi, H.-F.$$b5
000866007 7001_ $$0P:(DE-Juel1)151336$$aJin, W. T.$$b6
000866007 7001_ $$0P:(DE-Juel1)177779$$aNandi, S.$$b7
000866007 7001_ $$0P:(DE-Juel1)151305$$aSun, Xiao$$b8
000866007 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b9
000866007 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Th.$$b10
000866007 7001_ $$0P:(DE-HGF)0$$aLee, Y.$$b11
000866007 7001_ $$0P:(DE-HGF)0$$aHarmon, B. N.$$b12
000866007 7001_ $$0P:(DE-HGF)0$$aKe, L.$$b13
000866007 7001_ $$0P:(DE-HGF)0$$aOuyang, Z. W.$$b14
000866007 7001_ $$0P:(DE-Juel1)131047$$aXiao, Y.$$b15$$eCorresponding author
000866007 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.134420$$bAmerican Physical Society (APS)$$d2019-10-14$$n13$$p134420$$tPhysical Review B$$v100$$x2469-9950$$y2019
000866007 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.134420$$gVol. 100, no. 13, p. 134420$$n13$$p134420$$tPhysical review / B$$v100$$x2469-9950$$y2019
000866007 8564_ $$uhttps://juser.fz-juelich.de/record/866007/files/PhysRevB.100.134420.pdf$$yOpenAccess
000866007 8564_ $$uhttps://juser.fz-juelich.de/record/866007/files/PhysRevB.100.134420.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866007 909CO $$ooai:juser.fz-juelich.de:866007$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000866007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167574$$aForschungszentrum Jülich$$b0$$kFZJ
000866007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172659$$aForschungszentrum Jülich$$b4$$kFZJ
000866007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177779$$aForschungszentrum Jülich$$b7$$kFZJ
000866007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b9$$kFZJ
000866007 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b10$$kFZJ
000866007 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000866007 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000866007 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000866007 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000866007 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000866007 9141_ $$y2019
000866007 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866007 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866007 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000866007 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000866007 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866007 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866007 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866007 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866007 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866007 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866007 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866007 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866007 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866007 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000866007 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000866007 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000866007 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x3
000866007 9801_ $$aFullTexts
000866007 980__ $$ajournal
000866007 980__ $$aVDB
000866007 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000866007 980__ $$aI:(DE-Juel1)PGI-4-20110106
000866007 980__ $$aI:(DE-82)080009_20140620
000866007 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000866007 980__ $$aUNRESTRICTED
000866007 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.70.4003
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1327
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1114727
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.087602
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.144414
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.66.1607
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.027212
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja902623b
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cg5015303
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jssc.2009.07.005
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/16/29/L02
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-4596(87)90087-9
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp2053772
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4945395
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2016.01.063
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.125116
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.201101
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.104425
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.014430
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.024417
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/5/056001
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.99.134434
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.184404
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.144406
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3556448
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1524/9783486991321-024
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(99)01722-6
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0921-4526(93)90108-I
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.558
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.1505
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.121101
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C4RA06966H
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08917
000866007 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/77/7/076501