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The weak decay parameter α− of the Λ is an important quantity for the extraction of polarization

observables in various experiments. Moreover, in combination with αþ from Λ̄ decay it provides a measure

for matter-antimatter asymmetry. The weak decay parameter also affects the decay parameters of the Ξ and

Ω baryons and, in general, any quantity in which the polarization of the Λ is relevant. The recently reported

value by the BESIII Collaboration of 0.750(9)(4) is significantly larger than the previous PDG value of

0.642(13) that had been accepted and used for over 40 years. In this work we make an independent estimate

of α−, using an extensive set of polarization data measured in kaon photoproduction in the baryon

resonance region and constraints set by spin algebra. The obtained value is 0.721(6)(5). The result is

corroborated by multiple statistical tests as well as a modern phenomenological model, showing that our

new value yields the best description of the data in question. Our analysis supports the new BESIII finding

that α− is significantly larger than the previous PDG value. Any experimental quantity relying on the value

of α− should therefore be reconsidered.

DOI: 10.1103/PhysRevLett.123.182301

Introduction.—The decay parameter α− of the parity-

violating weak decay Λ → pπ− describes the interference

between parity-violating s and parity-conserving p waves.

A recent study by the BESIII Collaboration [1] reported a

value of α− as 0.750� 0.009� 0.004 for this quantity,

which is significantly different compared to the older value

of 0.642� 0.013 quoted in the reviews of the Particle Data

Group (PDG) until 2018 [2].

This newly published value of α− [1] is some 17%

higher than the older average PDG value, which had

been derived from results in Refs. [3,4] and others, that

were not compatible among themselves. Since the BESIII

and older average PDG values have uncertainties at the

percent level, there is a discrepancy of about 5 standard

deviations, and the two results are therefore incompatible.

The discrepancy might be due, for instance, to under-

estimated systematic effects in the calculation of correc-

tion factors in Ref. [3]. In the case of Ref. [4]

photographs of carbon-plate spark chambers were used,

and a ten-parameter kinematic fit applied to each event;

several sources of uncertainty were highlighted and

together with the approximate fitting method, there

was ample scope for systematic error. While the previous

measurements were all state of the art when carried out,

the 2019 PDG online update lists only the new BESIII

value “above the line.”

An independent estimate of this quantity is highly

desirable given that α− plays an important role in various

fields of physics. For instance, comparing α− with the

parameter αþ of the decay Λ̄ → p̄πþ provides a test of CP
symmetry for strange baryons and, thus, can potentially

shed light on the matter-antimatter asymmetry in the

Universe [5]. In this respect, a CP violation at the 3.3σ

level has been found by the LHCb Collaboration in four-

body decays of Λ
0
b and Λ̄

0
b baryons [6]. In the BESIII

simultaneous measurement of α− and αþ of the Λ, no sign

of CP violation was found [1], thereby resolving tensions

between older PDG values for them. The parameter α− has

also an impact on several theoretical studies where its

actual value enters directly. In particular, it would affect

calculations of the weak nonleptonic hyperon decays

within SU(3) chiral perturbation theory [7–9].

Over the last 40 years there have been various experi-

ments whose results rely on the value of α−. Examples of

this are the extensive studies of the reactions p̄p → Λ̄Λ and

p̄p→ Λ̄Σ
0 þ c:c: by the PS185 Collaboration at the LEAR

facility at CERN [10] that measured analyzing powers,

spin-correlation parameters, and spin-transfer coefficients.

Recent results, such as the STAR measurement of heavy

ion collisions to study the vortical structure of a nearly

ideal liquid [11], and the ATLAS measurement of Λ and Λ̄

transverse polarization [12] also depend on the value of α−.
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Information about other strange baryons depends on α−
through chains of successive decays. For example, the

decay parameter for Ξ is determined from the decays Ξ →

Λπ → Nππ and deduced from the product αΞα−, which in

turn affects the measured polarization data for the reactions

K−p → Kþ
Ξ
−, K0

Ξ
0 [13,14], and γp → KþKþ

Ξ
− [15].

The decay parameter forΩ− depends likewise on the values

of αΞ, and therefore α− [2].

Another class of experiments that depends on α− is the

series of measurements of recoil polarization observables

for kaon photo- and electroproduction in the baryon

resonance region [16–20]. Up to now, all recoil polarization

observables relying on the weak decay of the Λ have been

evaluated using the pre-2019 PDG value of α− (henceforth

denoted αold− ). Fits to such observables by theoretical

models are a crucial element in determining the light

baryon resonance spectrum [21–24], which provides a

point of comparison for theoretical approaches such as

quark models, Dyson-Schwinger, or lattice QCD

calculations.

Kaon photoproduction data can be also utilized to

provide a new and independent estimate for α−, as will

be demonstrated in the present work. The photoproduction

dataset contained in the combination of publications [18–

20] by the CLAS Collaboration, is subject to strict con-

straints from spin algebra (so-called Fierz identities), which

can be exploited to derive estimators for α− itself. We note

that a similar strategy has been followed once before, based

on data for the reaction π−p → K0
Λ [3]. Anticipating our

result, the value for α− found in our analysis is

0.721� 0.006, i.e., close to but noticeably smaller than

the number given by the BESIII Collaboration [1].

Determination of α− from kaon photoproduction data.—

Photoproduction experiments measure events in bins of

hadronic mass W, or equivalently Mandelstam
ffiffiffi

s
p

, and

center of mass meson scattering angle cos θ. Following

Ref. [25], the relative intensity distributions of events in

each fW; cos θg bin for γ þ p → K þ Λ reactions in which

there is no polarization of the beam or target, but where the

decay products of the Λ are measured, is

1þ α− cos θyP: ð1Þ

If the photon beam is circularly polarized we have

1þ α− cos θyPþ ðα− cos θxCx þ α− cos θzCzÞPγ
C; ð2Þ

and if the photon beam is linearly polarized the distribu-

tion is

1þ α− cos θyP − fΣþ α− cos θyTgPγ
L cos 2ϕ

− fα− cos θxOx þ α− cos θzOzgPγ
L sin 2ϕ: ð3Þ

The Oj ∈ fOx; Oz; T; Cx; Cz;Σ; Pg represent the polariza-

tion observables and ϕ is the angle between the reaction

plane and the photon polarization axis. The co-

ordinate system employed in this analysis is the so-called

“unprimed” frame where, for a photon momentum k⃗ and a

kaon momentum q⃗, axes are defined such that

ẑ ¼ k⃗

jk⃗j
; ŷ ¼ k⃗ × q⃗

jk⃗ × q⃗j
; x̂ ¼ ŷ × ẑ:

The reaction plane is thus defined by the vector k⃗ × q⃗, and
the coordinate system attached to theΛ at rest uses the same

orientation for determining direction cosines of the decay

proton cos θx;y;z. Together with α−, the degrees of circular

and linear polarizations, P
γ
L and P

γ
C, enter as “calibration”

parameters. The three expressions (1), (2), and (3) represent

the measurements Refs. [18,19] and [20], respectively.

Assuming that the angles θx;y;z, ϕ are measured accu-

rately, the extraction of the polarization observables Oj is

possible only if the calibration parameters fα−; Pγ
C; P

γ
Lg are

known. Equations (1), (2), and (3) show that the extraction

of Ox, Oz, and T requires the product α−P
γ
L, Cx, and Cz

require α−P
γ
C, while Σ and P require P

γ
L and α−,

respectively.

The spin algebra of pseudoscalar meson photoproduc-

tion results in several constraints among all 15 polarization

observables, known as Fierz identities after the method

used in Ref. [26] to derive them. Two of these connect the

observables measured by the CLAS Collaboration:

O2
x þO2

z þ C2
x þ C2

z þ Σ
2 − T2 þ P2 ¼ 1 ð4Þ

ΣP − CxOz þ CzOx − T ¼ 0: ð5Þ

If all observables in Eqs. (4) and (5) are measured then

these Fierz identities can be used to estimate the calibration

parameters. The published experiments estimate the uncer-

tainties in P
γ
C and P

γ
L as systematic uncertainties, so we

have some prior knowledge of their values, giving the

opportunity to estimate α−.

The CLAS data span a range of energiesW and scattering

angles θ. Distributions of observables in fW; cos θg are then
used to study light baryon resonances. In the present work,

we can simply treat the measured data as an ensemble of

observations, each of which are related to α−.

There is a common region in fW; cos θg space among

the three measurements Refs. [18,19] and [20], which is

spanned by the 314 points reported in Ref. [20]. Denoting

byOj;i ≡OjðWi; cos θiÞ the seven observables j ¼ 1;…; 7

at kinematic points i≡ fWi; cos θig, we have five of these
observables, fOx; Oz; T;Σ; Pgi; i ¼ 1;…; 314, from

Ref. [20]. To obtain the values of Cx and Cz (and their

variances) at the points fWi; cos θig we proceed as follows:
We use Gaussian process prior (GP) inference [27] with

maximum a posteriori optimization of covariance function

hyperparameters to model the Cx, Cz observation

PHYSICAL REVIEW LETTERS 123, 182301 (2019)

182301-2



uncertainties. A second heteroscedastic GP is used, incor-

porating the mean of the GP uncertainty model as obser-

vation variance, to interpolate the data reported in Ref. [19],

using the GPML package [28]. Illustration and cross-checks

of the method are provided in the Supplemental

Material [29].

Statistical analysis.—With these data, the following

Fierz values can be defined:

F
ð1Þ
i ¼ a2l2ðO2

x;i þO2
z;i − T 2

i Þ
þ a2c2ðC2x;i þ C2z;iÞ þ l2Σ2

i þ a2P2
i ; ð6Þ

F
ð2Þ
i ¼ al½ΣiPi − T i − acðCx;iOz;i − Cz;iOx;iÞ�; ð7Þ

where cð¼ P
γold
C =P

γ
CÞ and lð¼ P

γold
L =P

γ
LÞ represent relative

systematic correction factors in the calibration parameters

for circular and linear photon beam polarization, respec-

tively. að¼ αold− =α−Þ allows for a calibration of the Λ decay

parameter, for which in the CLAS publications the PDG

value at that time, αold− ¼ 0.642, had been adopted. We use

the convention that calligraphic symbols denote random

variables (RVs). The observables Oj;i are assumed inde-

pendent, normally distributed RVs, Oj;i ∼N ½μj;i; σ2j;i� that
take on values Oj;i. The Fierz RVs F

ð1;2Þ
i take on values

f
ð1;2Þ
i and μj;i, σ

2
j;i are the reported CLAS measurements.

The use of the constraints imposed by the Fierz identities to

determine a, l, c poses a series of statistical challenges that
are summarized below. The Supplemental Material [29]

expands on these points with several explicit derivations

and numerical checks using synthetic data. 1. Parameter

estimates were checked to be unbiased. The parameters a, l,
c scale both the μj;i and the uncertainties σj;i, which

potentially leads to biased results. This is a problem related

to, but not identical to, an effect known as the d’Agostini

bias [30,31]. 2. Unnormalized probability density functions

(pdfs) were used. Normalization factors of likelihoods

depend on the data values that, in our case, depend on

a, l, c. This dependence is spurious [32]. We therefore

indicate the likelihoods with “∝” in the following. Once the

distribution of a, l, c is determined we perform an

a posteriori normalization of the result, see Eq. (10)

below. 3. For the first Fierz identity, a naive guess based

on Eq. (4) of the expectation, E½F ð1Þ
i � ¼ 1, is only correct

in the limit σj;i → 0. The pdf of each summand in

Eq. (6) follows a scaled, noncentral χ2 distribution with

E½O2
j;i� ¼ μ2j;i þ σ2j;i ≠ μ2j;i. Although there exists no closed

form for the distribution of F
ð1Þ
i , denoted below as

pð1Þðfð1Þi ja; l; cÞ, the expectation value can be calculated

because expectation values add. For F
ð2Þ
i , E½Oj;iOj0;i� ¼

μj;iμj0;i with j ≠ j0 and there is no such shift so that the

Fierz identity reads E½F ð2Þ
i � ¼ 0. 4. For each kinematic

point i, we obtain

p
ð12Þ
i ðOija; l; cÞ ∝ pð1Þðfð1Þi ¼ Δfija; l; cÞ

× pð2Þðfð2Þi ¼ 0ja; l; cÞ; ð8Þ

where Oi ¼∪7
j¼1 Oj;i symbolizes the dataset at point i.

Here, Δfi ≠ 1 is the a, l, c-dependent expectation value for

f
ð1Þ
i that corresponds to the best fulfillment of the first Fierz

identity (see Supplemental Material [29] for an explicit

expression). As there is no closed form for the distributions

of the Fierz values, they can be estimated by sampling: For

fixed a, l, c, Fierz values f
ð1;2Þ
i are calculated from random

samples of the observables Oj;i. Then, those f
ð1;2Þ
i that are

located in a small region around Δfi and 0 are counted, for
Fierz identity 1 and 2, respectively. This procedure is

repeated in a scan of the whole a, l, c space. 4. A Gaussian

likelihood can be used for each point i. We found that the

nonlinearities of the problem are small for this particular

case as discussed in the Supplemental Material [29], which

allows us to approximate

p
ð12Þ
i ðOija; l; cÞ ∝ exp

�

−

�μ
f
ð1Þ
i

− 1

σ
F

ð1Þ
i

�2

−

�μ
f
ð2Þ
i

σ
F

ð2Þ
i

�

2
�

; ð9Þ

where the μ
f
ð1;2Þ
i

equal the right-hand sides of Eqs. (6), (7)

with theOj;i replaced by their means μj;i (i.e., the measured

central values reported in the literature), and expressions for

σ
F

ð1;2Þ
i

given in the Supplemental Material [29]. This

probability is thus an expression of how far away from

the Fierz constraints the combination of the observables j at
kinematic point i is.
As data for different energies and scattering angles are

independent, the combined likelihood can be written as the

product

PðOja; l; cÞ ¼ 1

Z

Y

n

i¼1

p
ð12Þ
i ðOija; l; cÞ; ð10Þ

where O ¼∪n
i¼1 Oi symbolizes the entire dataset and Z is

the normalization constant obtained by integrating

PðOja; l; cÞ over the a, l, c space (see item 2.).

Even with the two Fierz identities as constraints, a, l, and

c are highly correlated, and priors on P
γ
C and P

γ
L are

required. Systematic uncertainties in the experiments are

quoted as numbers, which we denote as δC and δL, but there

is no universal prescription to code this information as a

pdf. To check the robustness of the method we used four

different priors Pðl; cÞ: (i) Gaussian: l; c ∼N ð1; δ2l;cÞ;
(ii) Uniform: l; c ∼ Uð1 − δl;c; 1þ δl;cÞ; (iii) Double uni-

form: l; c ∼ Uð1 − 2δl;c; 1þ 2δl;cÞ; and (iv) Fixed:

l ¼ c ¼ 1. We take δl ¼ 0.05 and δc ¼ 0.02 as represen-

tative values, according to the systematic errors estimated

in Refs. [19,20]. U represents a uniform pdf. The posterior

density is
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Pða; l; cjOÞ ∝ PðOja; l; cÞPðl; cÞ: ð11Þ

The posteriors corresponding to the choice of priors were

explored using a Markov Chain Monte Carlo (MCMC)

implementation (emcee [33]). As there were only three

parameters to be determined we were also able to scan

directly across the parameters a, c, and l to validate the

results of the MCMC calculations. The results for α− were

obtained by marginalizing over l and c. Both methods were

checked by applying them to synthetic data that had been

scaled appropriately by a “wrong” value of α−.

Results.—The results for the marginalized posteriors for

α− with the measured CLAS data are depicted in Fig. 1, and

the mean and standard deviation of the marginalized pdfs

are reported in Table I.

The means of the posteriors are all consistent with each

other. While this is not an exhaustive sensitivity check, the

range of priors chosen reflects quite different assumptions.

This therefore suggests that the estimated value for α− does

not depend sensitively on the choice of prior.

The Gaussian priors for c and l give unrealistic mean

values of c and l in the posterior pdf that are 3–4 standard

deviations from 1.0, their nominal values. This is possible

since a normal distribution is technically nonzero over an

infinite domain. Results reported by experiments imply that

the range of values defined by the quoted systematic

uncertainties should contain the possible values of calibra-

tion parameters with high probability, without specifying

the form of a pdf. While normal pdfs are often assumed for

systematic uncertainty they are perhaps not appropriate in

this case.

The use of uniform pdfs as priors for P
γ
C and P

γ
L

represents another extreme, where the implication is that

the true values must lie within a given range. We take two

variants: a uniform range defined by the size of the

systematic uncertainties, and a uniform distribution of

double this range. A final extreme assumption is that there

is no systematic error, and that c ¼ l ¼ 1.

We make the assumption that the uniform prior for c and
l between the quoted systematic uncertainties represents the

most realistic assumption, so we quote the mean value of

this variant (0.721) as our result, together with the standard

deviation (0.006) of the pdf of α− as the statistical

uncertainty, and a systematic uncertainty of � half the

range of values 1=2ð0.727 − 0.717Þ ¼ 0.005. We denote

this value by αCLAS− below.

The Supplemental Material [29] provides a more detailed

representation of the results in a, l, c space.

Refits with the Jülich-Bonn model.—To cross-check the

results obtained in the previous section and to estimate

the impact of a new value of α− in calculations that employ

data such as the ones from Refs. [18–20] as input, we

use the Jülich-Bonn (JüBo) framework. This dynamical

coupled-channel approach is one framework among others

[21,22,24,34–36] that aim to extract the nucleon resonance

spectrum from kaon photoproduction, often in a combined

analysis of pion- and photon-induced hadronic scattering

processes. In the JüBo approach, the Fierz identities are

fulfilled by construction. A detailed description of the

model can be found in Refs. [37] and [38]; the photo-

production data of the ηp and Kþ
Λ final states were

included recently [23,39], among them the measurements

of the differential cross section and several polarization

observables in KΛ photoproduction by the CLAS

Collaboration [18–20].

In order to estimate the impact of a different value for α−
within the JüBo model, the polarization observables T, Ox

and Oz from Ref. [20], Cx and Cz from Ref. [19] and P
from Ref. [18] are scaled by this value, i.e., multiplied by

ðαold− =αBESIII− Þ or by ðαold− =αCLAS− Þ and a refit of a subspace

of free parameters of the model is performed. The data

included in the refit are limited to those that are contained in

the energy range defined by the measurement in Ref. [20].

FIG. 1. Posterior densities for α−, given different priors for the

beam polarization calibration constants P
γ
C and P

γ
L. The histo-

grams show the result of the MCMC sampling of the margin-

alized posterior densities while the solid lines represent a direct

scan of the posteriors. For clarity, the results corresponding to the

double width uniform priors for P
γ
C and P

γ
L are omitted. Dark

gray vertical bands represent statistical uncertainty; the additional

light gray bands on the BESIII result represent systematic

uncertainty.

TABLE I. Summary of results. The result marked (⋆) represents

the most realistic prior on P
γ
C and P

γ
L.

Source Value (stat) (syst) Prior Assumption c, l

PDG’18 [2] 0.642 (13)

BES III [1] 0.750 (9) (4)

Analysis 0.719 (13) N ð1.0; 0.022Þ, N ð1.0; 0.052Þ
Of CLAS 0.721 (6) (⋆) Uð0.98; 1.02Þ, Uð0.95; 1.05Þ
Data 0.727 (7) Uð0.96; 1.04Þ, Uð0.90; 1.10Þ

0.717 (4) Both fixed at 1.0

0.721 (6) (5) Summary of our result
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Note that also the statistical data errors entering the χ2 are

scaled.

In addition, we also perform a refit of the unscaled data.

This is necessary because the solution JüBo2017 [23],

which is the starting point for the refits, represents the

minimum of the global coupled-channels fit including all

48 000 data points from different reactions. A refit con-

sidering only the unscaled data listed in Table II provides a

valid point of comparison for the fit to the scaled data. We

vary only parameters of the nonpole polynomials [38] that

couple to the KΛ final state, which amounts to 73 fit

parameters. They are adjusted to the data in a χ2 mini-

mization using MINUIT on the JURECA supercomputer at

the Jülich Supercomputing Centre [40]. In all three fits

identical fitting strategies are applied.

The results are shown in Table II. The best χ2 is obtained

for the data scaled by αCLAS− as determined in this study,

while the refit to the data scaled by αBESIII− returns a similar

χ2 to the fit to the unscaled data (αold− ¼ 0.642). Both are

significantly worse than αCLAS− which corroborates our

independent result. As a caveat, the best χ2=n itself

(1.59) is still too large, which suggests that for a more

quantitative comparison l and c should also be varied as

before to allow for more systematic uncertainties, or that

the model parametrization itself is not flexible enough.

Conclusions.—The decay parameter α− of the Λ is a

fundamental physical constant that is used to obtain

polarization information from reactions in which the

parity-violating weak decay Λ → pπ− occurs. Its value

has recently been thrown into dispute by a new measure-

ment, thereby affecting all results that rely on it. We have

made an independent estimate of this quantity by combin-

ing an ensemble of observables from kaon photoproduction

measured at CLAS with constraints set by Fierz identities.

Our value of 0.721� 0.006 (statistical) �0.005 (system-

atic), clearly favors the new BESIII result of 0.750�

0.009�0.004 over the previous PDG value of 0.642�
0.013, though it differs manifestly from the former as well.

In view of that, it is clear that past results which involve

the Λ decay parameter should be revisited to ensure that the

derived quantities are in line with the new and larger

reference value of α−, bearing in mind the remaining

uncertainty. This applies to data from all experiments

where the polarization of the Λ or Ξ baryon was measured.

As a consequence, phenomenological analyses of those

data performed in searches for (new) excited baryons and

their properties should also be updated.

This work was supported by the United Kingdom’s

Science and Technology Facilities Council (STFC) from

Grant No. ST/P004458/1; M. D. acknowledges support by

the National Science Foundation (Grant No. PHY-

1452055) and by the U.S. Department of Energy,

Office of Science, Office of Nuclear Physics under

Contract No. DE-AC05-06OR23177 and Grant No. DE-

SC0016582. This work is supported in part by DFG and

NSFC through funds provided to the Sino-German CRC

110 “Symmetry and the Emergence of Structure in QCD”

(NSFC Grant No. 11621131001, DFG Grant No. TRR110)

and R. M-S. acknowledges EPSRC Grants No. EP/

M01326X/1 and No. EP/R018634/1. The authors grate-

fully acknowledge the computing time granted through

JARA-HPC on the supercomputer JURECA at

Forschungszentrum Jülich. We thank Dr. H. Nickisch for

helpful advice on the implementation of coupled hetero-

skedastic GP models in his GPML toolbox. We also thank

Ulf-G. Meißner for his comments on the draft of this Letter.

*
Corresponding author.

David.Ireland@glasgow.ac.uk
†
doring@gwu.edu

‡
Derek.Glazier@glasgow.ac.uk

§
j.haidenbauer@fz-juelich.de

¶
maximmai@gwu.edu
**
Roderick.Murray-Smith@glasgow.ac.uk

††
roenchen@hiskp.uni-bonn.de

[1] M. Ablikim et al. (BESIII Collaboration), Nat. Phys. 15,

631 (2019).

[2] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).

[3] P. Astbury et al., Nucl. Phys. B99, 30 (1975).

[4] W. E. Cleland, G. Conforto, G. H. Eaton, H. J. Gerber, M.

Reinharz, A. Gautschi, E. Heer, C. Revillard, and G. Von

Dardel, Nucl. Phys. B40, 221 (1972).

[5] A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967)

[JETP Lett. 5, 24 (1967)]; Usp. Fiz. Nauk 161, 61 (1991)

[Sov. Phys. Usp. 34, 392 (1991)].

[6] R. Aaij et al. (LHCb Collaboration), Nat. Phys. 13, 391

(2017).

[7] J. Bijnens, H. Sonoda, and M. B. Wise, Nucl. Phys. B261,

185 (1985).

[8] B. R. Holstein, Int. J. Mod. Phys. E 09, 359 (2000).

TABLE II. χ2=data point of the Jülich-Bonn refits for different

values of α−. The value of α− ¼ αold− ¼ 0.642 corresponds to the

refit to unscaled data, α− ¼ 0.75 correponds to the BES-III result

[1] and α− ¼ 0.721 uses the data-driven result of this study as

input for the refit.

χ2=n (Refits)

Observable (No. data points) α− ¼ 0.642 0.75 0.721

dσ=dΩ (421) [18] 1.11 1.03 0.95

Σ (314) [20] 2.55 2.61 2.56

T (314) [20] 1.75 1.74 1.69

P (410) [18] 1.84 1.66 1.62

Cx (82) [19] 2.15 1.72 1.34

Cz (85) [19] 1.58 1.83 1.62

Ox (314) [20] 1.44 1.53 1.51

Oz (314) [20] 1.34 1.58 1.49

All (2254) 1.67 1.66 1.59

PHYSICAL REVIEW LETTERS 123, 182301 (2019)

182301-5



[9] B. Borasoy and E. Marco, Phys. Rev. D 67, 114016 (2003).

[10] E. Klempt, F. Bradamante, A. Martin, and J. M. Richard,

Phys. Rep. 368, 119 (2002).

[11] STAR Collaboration, Nature (London) 548, 62 (2017).

[12] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 91,

032004 (2015).

[13] T. G. Trippe and P. E. Schlein, Phys. Rev. 158, 1334 (1967).

[14] P. M. Dauber, J. P. Berge, J. R. Hubbard, D. W. Merrill, and

R. A. Muller, Phys. Rev. 179, 1262 (1969).

[15] J. Bono et al. (CLAS Collaboration), Phys. Lett. B 783, 280

(2018).

[16] D. S. Carman et al., Phys. Rev. Lett. 90, 131804 (2003).

[17] D. S. Carman et al., Phys. Rev. C 79, 065205 (2009).

[18] M. E. McCracken et al., Phys. Rev. C 81, 025201 (2010).

[19] R. K. Bradford et al. (CLAS Collaboration), Phys. Rev. C

75, 035205 (2007).

[20] C. A. Paterson et al. (CLAS Collaboration), Phys. Rev. C

93, 065201 (2016).

[21] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato,

Phys. Rev. C 94, 015201 (2016).

[22] A. V. Anisovich et al., Phys. Rev. Lett. 119, 062004 (2017).

[23] D. Rönchen, M. Döring, and U.-G. Meißner, Eur. Phys. J. A

54, 110 (2018).

[24] B. C. Hunt and D. M. Manley, Phys. Rev. C 99, 055204

(2019).

[25] A. M. Sandorfi, S. Hoblit, H. Kamano, and T. S. H. Lee, J.

Phys. G 38, 053001 (2011).

[26] W.-T. Chiang and F. Tabakin, Phys. Rev. C 55, 2054 (1997).

[27] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes

for Machine Learning (MIT Press, Cambridge, MA, 2005).

[28] C. E. Rasmussen and H. Nickisch, J. Mach. Learn. Res. 11,

3011 (2010).

[29] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.182301 for addi-

tional technical details.

[30] G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A

346, 306 (1994).

[31] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre,

J. Rojo, and M. Ubiali (NNPDF Collaboration), J. High

Energy Phys. 05 (2010) 075.

[32] B. Roe, arXiv:1506.09077.

[33] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Good-

man, Publ. Astron. Soc. Pac. 125, 306 (2013).

[34] X. Cao, V. Shklyar, and H. Lenske, Phys. Rev. C 88, 055204

(2013).

[35] O. V. Maxwell, Phys. Rev. C 85, 034611 (2012).

[36] L. De Cruz, T. Vrancx, P. Vancraeyveld, and J. Ryckebusch,

Phys. Rev. Lett. 108, 182002 (2012).

[37] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.

Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner,

and K. Nakayama, Eur. Phys. J. A 49, 44 (2013).

[38] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.

Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner,

and K. Nakayama, Eur. Phys. J. A 50, 101 (2014); 51,

63(E) (2015).

[39] D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer,

U.-G. Meißner, and K. Nakayama, Eur. Phys. J. A 51, 70

(2015).

[40] Jülich Supercomputing Centre, J. Large-Scale Res. Facil. 4,

A132 (2018).

PHYSICAL REVIEW LETTERS 123, 182301 (2019)

182301-6


