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Abstract

Predicting the complete free energy landscape associated with protein-ligand un-

binding may greatly help designing drugs with highly optimized pharmacokinetics.

Here we investigate the unbinding of the iperoxo agonist to its target human neurore-

ceptor M2, embedded in a neuronal membrane. By feeding out-of-equilibrium molecu-

lar simulations data in a classification analysis, we identify the few essential reaction

coordinates of the process. The full landscape is then reconstructed using an exact

enhanced sampling method, well-tempered metadynamics in its funnel variant. The

calculations reproduce well the measured affinity, provide a rationale for mutagene-

sis data and show that the ligand can escape via two different routes. The allosteric

modulator LY2119620 turns out to hamper both escapes routes, thus slowing down

the unbinding process, as experimentally observed. This computationally affordable

protocol is totally general and it can be easily applied to determine the full free energy

landscape of membrane receptors/drug interactions.

1 Introduction

Brain diagnostics rely mostly on Positron Emission Tomography (PET) imaging, where

small molecules targeting specific neuroreceptors carry a short-lived isotope.1 In their decay

process, the isotopes emit a positron whose distribution reveals the position and receptors’

expression levels inside the brain. Neurological diseases (from Schizophrenia to Parkinson’s,

from autism to brain tumors2,3), can be then readily revealed from receptors maps. A great

number of agonist and antagonist that target neuroreceptors for PET, called tracers, has

been designed,4 yet little is known about their complex binding/unbinding processes. A

detailed knowledge of these is of great importance because it allows designing ligands with

a more predictable and safer behavior, modulating the affinity and reducing their residence

time.5

In this work, we investigate in silico the molecular recognition process of a widely used
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tracer, iperoxo (Figure 1), inside the human muscarinic acetylcholine receptor M2, a highly

valuable target for neuroimaging. The M2 receptor is a member of the G-protein coupled

receptors (GPCRs) superfamily.6 It regulates a large number of different functions in the

human body, from modulation of cognition in the brain to motor processes.7 It is also involved

in neurological and neurodegenerative diseases like schizophrenia and Parkinson’s.8,9

The description of such complex processes can be tackled on the computer by enhanced

sampling techniques based on molecular dynamics simulations.10 One of the most used meth-

ods is well-tempered metadynamics,11,12 where the conformational space of a system can be

studied enhancing the fluctuations along some set of relevant functions of the coordinates

(called collective variables, CVs), depositing a bias that is dependent on the history of the

system. This bias forces the system to explore new states, and, after reaching convergence,

it is possible to recover the free energy surface projected along the chosen CVs. This was

previously employed to unveil a variety of ligand binding/unbinding processes,13,14 mov-

ing the problem to a clever identification of a suitable set of collective variables. Efficient

metadynamics calculations of binding free energy differences in GPCRs, including M2, was

recently addressed using a single CV.15 However, keeping pharmacological applications in

mind, it is highly desirable to use a more general approach in which a larger number of CVs

is employed. In this way, the chemical aspects of binding/unbinding transitions and the

intermediate state can be better described.16

Here, we present a new scheme that leads to a dramatic decrease in the CPU time

needed to reach convergence, allowing to use more than one CVs. There is a practical limit

in the number of CVs that can be implemented in metadynamics, because the convergence

times scales exponentially with the number of the CVs. Considering this point, the number

of CVs that is advisable to employ is usually no more than 3, which implies the need of

wise dimensionality reduction methods. The problem of dimensionality reduction in com-

plex phase-space transitions has recently seen an increasing number of approaches based

on linear statistical projection of data,17,18 as well as methods that involve machine learn-
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ing/artificial intelligence approaches.19 For computer-aided ligand design, the first kind of

approach appears to be more useful: in a linear combination of different observables, the

magnitude of the weights represents a straightforward estimation of the relative importance

of the single components. In the case of more complex (i.e. non-linear) combinations of

those observables, recognizing the important ones can be a nontrivial (or even impossible)

problem.

Here we propose to use such approach based on a set of local descriptors, like distances

and dihedral angles. These are determined by exploring putative unbinding pathways and

candidate intermediate states using the so called Ratchet&Pawl MD (rMD) simulations.20,21

These are similar in spirit to steered MD simulations.22 Analyzing those states, we were

able to extract a set of 23 atom pair distances that describe ligand/receptor non-bonded

interactions. The latter were projected in 3 CVs that separate well the intermediate states

of the process by means of a recently developed data classification method, called Multi

Class Harmonic Linear Discriminant Analysis (MC-HLDA).17,18 This technique highlights

the importance of every pair for the landscape description, keeping the physical meaning of

the low-dimensional projection evident. Finally, using chemical intuition, we further reduced

the number of CVs to 2, dramatically decreasing the converge time.

We use here the funnel variant of well-tempered metadynamics method.23 This allows

to compute accurate binding free energies at a lower computational cost. The calculations,

based on the ligand/protein complex X-ray structure [24], provide us with the full free energy

landscape as a function of the two CVs. The resulting binding free energy (−13.6 ± 0.5

kcal/mol) agrees with that measured in saturation binding assays (-13.7 kcal/mol),24 with

a convergence time comparable to using a traditional approach with only one CV. Most

importantly, our calculations allow for a highly precise description of the ligand binding

events. In particular, we were able to confirm the ligand unbinding pathway emerged from

rMD analysis and previous metadynamics simulations as a function of one CV,15 and to find

a second pathway that involves the rearrangement of the extracellular loop 2 (ECL2, Fig.
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Candidate ligand pathway and intermediate states

Multiple rMD simulations may help identify intermediate states that the ligand finds on its

way to unbinding at a moderate computational cost: we simulated 10 different unbinding

events (stopping after the ligand is fully solvated) for a total of ∼50 ns worth of simulation.

The ratcheting coordinate gives a rough estimation of the progress of the unbinding event.

Here, such coordinate is the projection along the direction normal to the membrane of the

distance between the center of mass of the ligand and the binding pocket.

By clustering the rMD trajectories, 7 major clusters were identified: the bound state,

corresponding to the ligands pose in the X-ray structure complex,24 along with 6 different

intermediates. We tested the stability of those states by performing MD simulations that

were 50 ns long for every intermediate. Within this time scale only two states (A and C,

Figure 2) remained stable. The others evolved toward directly into state A or C, or passing

through transient state B (Figure 2), which was visited several times in different simulations.

The picture emerging from this set of rMD simulations is that the overall process can be

described by a rigid rotation of the ligand trimethylammonium group pivoting around D103.

Starting from the crystallographic bound state (red in Figure 2), the ligand breaks its non-

bonded interactions with hydrophobic residues Q240(sidechain), F195(backbone), V111(sidechain)

while rotating around the axis formed by the alkyne bond (see Figure 2). The ligand ring

simultaneously forms new H-bonds with Y104(sidechain), S107(sidechain) and Y239(sidechain) (state

A, dark orange in Figure 2). At this point, the ligand further rotates along the salt bridge

(Figure 2), finding a transient state (state B, light orange in Figure 2). Here, the ring

interacts with Y239(sidechain) and Y262(sidechain). Next, the ligand reaches the last intermediate

state (C, yellow in Fig. 3). After, it breaks its non-bonded interactions with Y104 while

maintaining the H-bonds with Y239(sidechain). The ligand is now partially solvent exposed,

forming H-bonds with ∼5 water molecules. Finally, it completely unbinds and it becomes

fully solvated. It assumes a conformation which is normal with respect to the membrane.

Water molecules could freely go back and forth from the extracellular side to the binding
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site during the unbinding events. Along with the lipids, they do not play a particular role

during the process. The same observations hold in all simulations performed here.

The simulations allowed to identify 23 local descriptors able to identify all the different

intermediate and transient states (see Table S1). These where chosen here as distances

between atom pairs involved in the observed non-bonded interaction (i.e. hydrogen bonds

and salt bridges) conserved for more than 20% of the simulation time in each state.

In conclusion, the simulations show a rigid rotation of the ligand with the pivot given

by the salt bridges between the ligand trimethylammonium group and D103. Consistently,

the salt bridge is maintained in all the four states, representing the pivot of the unbinding

transition.

CVs identification

We aim at finding optimal collective variables starting from the 23 descriptors identified as

essential transition parameters during the unbiased MD runs describes above. To reduce the

dimensionality of our descriptors, we exploited HLDA (details in Methods and SI). HLDA

allows packing into low dimensional yet efficient CVs large sets of state descriptors that cap-

ture the essential dynamics of the process. The only information required by the algorithm

are simple statistical quantities, namely means and multivariate variances, collected during

unbiased runs in the reference states.

In other words, we estimate the average and the fluctuations of all the local descriptors

(i.e., by computing them in an equilibrium MD simulation) in all the states of interest, and

manipulate them in order to obtain a lower dimensional projection of the conformational

space that can be used in our enhanced sampling techniques (details in Methods and SI). The

main advantage of HLDA with respect to other similar dimensionality reduction techniques

is the fact that HLDA exploits the information about the fluctuations of the descriptors in

the free energy basins (see SI), highlighting the relative importance of every component in

the linear combination that constitutes our final CVs. For instance, other techniques like
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PCA,27 PLS-DA28 and LDA29 rescale the data by their standard deviation to assure the

similarity of the distributions, losing part of the information.

In the construction of the HLDA we consider four states, the stable bound state, A, and

C. We added the state B because, although it is not stable, it appeared to be an important

transit step in the evolution of the unbinding process. Being such state relatively short-lived

if compared to states A and C, it was not possible to simulate it in an equilibrium MD run

for enough time. This happens because, during the unbiased MD runs, the ligand jumps to

both states A and C. Therefore, the fluctuation matrix for this state was constructed by

combining information coming from all the simulations that explored this state, while for

the other 3 states the standard procedure was used (see Methods). According to HLDA,

out of these states 3 optimal CVs were constructed. In order to speed up convergence, we

neglected the CV with the lowest associated eigenvalue since in our rMD dynamics a strong

correlation between the trajectory projection on the lowest and the 2nd highest eigenvalues

was seen (see Figure S2).

Metadynamics simulation

With this choice of CVs, we performed a metadynamics simulation with 8 different walkers.

After 1 µs of simulation we have seen a large number of binding/unbinding events in all

the walkers and we reached convergence (see Figures S3 and S4). Our metadynamics run

shows that all of the rMD intermediate states are relative free energy minima and that the

bound state is the absolute minimum (Figure 2). However, another intermediate state (D

in Figure 2) emerges from our calculated free energy landscape. The ligand here forms H-

bonds with Y266(sidechain) and Y104(sidechain), as emerging from a 50 ns-long MD simulation

performed on D: we have an H-bond with Y266(sidechain) and Y104(sidechain). In addition,

ECL2 (Fig. 3) changes its conformation with respect to the bound state: It rotates hav-

ing as pivot W162 and N183. During this rearrangement, the W90(backbone)-T229(backbone)

and N246(sidechain)-Y177(sidechain) H-bonds are disrupted and the T262(sidechain)-C176(backbone),
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3 Discussion

We have presented a protocol to study thermodynamics and the intermediate states progres-

sion of protein-ligand unbinding processes. As an example, we have focused on a clinically

approved tracer binding to a neuroreceptor for PET applications. This is iperoxo in the M2

receptor, for which experimental structural information is available.24

To describe the full free energy landscape associated with the process, we have adopted

here a two-step strategy. First, we integrated data from out-of-equilibrium technique (rMD)

with a modified data classification analysis method (HLDA) to capture the relevant chemical

features of the process. Then, with a well-defined and reliable equilibrium method (Funnel

Metadynamics) we investigated the thermodynamics of our protein-ligand (un)binding pro-

cess. The calculations shows that the bound state is the pose in the X-ray structure24 and

allow identifying the intermediate (A, C, D) and transient (B) states (Figure 2).

We calculated relevant observables that can be compared with experimental data,24 ob-

taining a good agreement (∆Gsim = -13.6 ± 0.5 kcal/mol vs. ∆Gexp = -13.7 kcal/mol). A

similar value of ∆G was obtained with a single CV.15 However, here we have a much more

detailed description and deeper insight of the behavior of the ligand. In particular, Y104

reveals itself as a key residue for the ligand binding process by forming important stabilizing

interactions in the intermediates states A and B. In addition, D103 plays a fundamental

role for the conformational changes of iperoxo in the entire unbinding process and in the

bound state. Indeed, D103 is the pivot for the rotation of iperoxo (Figure 3 and S7). These

results provide a rationale for binding selectivity experiments, which shows that both groups

are key residues for agonists binding.25 Most importantly, the reconstruction of the full en-

ergy landscape points to two different escape pathways for this ligand (Figure 3). The first

was identified by rMD simulations and previous computational works.15 It does not involve

significant changes in the structure of the receptor. In contrast, the second pathway, not

emerging from the other simulations, does involve a complex rearrangement of the ECL2

loop (Figure 3), which leads in turn to intramolecular H-bonds breakages.
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The presence of allosteric ligands -used to enhanced the ligands affinity26- is expected to

affect both escape routes. Indeed, visual inspection of the X-ray structure of the receptor in

presence not only of the iperoxo tracer but also of one allosteric ligand, called LY2119620

(the only experimental structure available with both the ligands)24 shows that: (i) the

first pathway is directly blocked by the allosteric modulator itself (see Figure S6); (ii) the

conformational rearrangement of the extracellular loop needed to open the second pathway

is hindered (see Figure S6). So, directly or indirectly the allosteric modulator hampers the

ligands unbinding from the receptor. This provides a rationale for the large decrease (more

than one order of magnitude) in koff upon addition of the allosteric ligand.30 We plan to

apply this technique also to the full system (receptor+orthosteric ligand+allosteric ligand),

to study also quantitatively the allosteric effect on the ligand binding.

Next, we stress the efficiency of our computational protocol: we reached convergence on

2 different CVs with a computational effort comparable to the one needed to converge on

the same system on a single CV.15 This is particularly important in large systems (Figure 1)

like GPCRs, which constitute a target for more than 30% of FDA drugs.31 This protocol can

be straightforwardly applied to similar pharmacologically relevant biomolecules, including

other transmembrane proteins. Indeed, one can expect that the number of intermediate

states in an unbinding transition should be similar to the one found for this system. One

can then foresee the possibility of applying the dimensionality reduction given by HLDA to

properly describe unbinding events. Keeping pharmacological applications in mind, another

important point is the usage of a more realistic neuronal membrane model. The membrane

composition was shown to change structure, dynamics and thermodynamics of GPCRs in a

significant way.32,33

Keeping future ligand design applications in mind, our calculations allow also to identify

important chemical groups for the binding and unbinding process. First, a charged group,

like trimethylammonium, should be present to interact with D103. Indeed, other agonists

such as acetylcholine and Oxotremorine M34,35 contain such group. Furthermore, the atom
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O2 in the ring (see figure S9) is involved in structural determinants (the distances d1, d3, d8

and d19), which contribute significantly to our CVs. Similarly, the distances involving N2

(d2, d5, d9, d17, and d18) are important for our CVs. Those functional groups emerge as

important also experimentally in the work of Schrage et al.,34 where a comparison of different

possible decoration is shown, and the common point of all those 3 decoration is the charged

part and the presence of the oxygen and nitrogen atoms. In another work35 the authors

starts from a functionalized benzene scaffold and a quaternary ammonium salt (to form a

salt bridge with D103) with different carbon chains spacers. From all the candidates shown,

only those containing an oxygen atom at the same distance of the one present in the iperoxo

showed good docking scores in the active state, confirming the hints given by HLDA analysis.

One of the future planned applications of this technique consist in including explicitely

the full free energy landscape information as shown in Russo et al.36 for protein/ligand

binding, including structures from the transition state to lower the free energy barriers.

Another possible extension is to use free energy landscape information combined with the

optimization of the ligand confomation itself employing metadynamics.37,38

In conclusion, we have shown the possibility to integrate new statistically accurate infor-

mation towards a more precise drug design. All the non-bonded interaction data obtained by

enhanced sampling can give a large number of constraints in current drug design technique,

possibly raise the success rate in designing a new molecule that can bind the system studied.

In the future, we plan to extend our approach to the calculation of kinetic constants of ligand

binding/unbinding, where metadynamics39 and other techniques like variationally enhanced

sampling40 may be exploited.
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4 Materials and Methods

System preparation

The structure of the human M2/iperoxo complex at 3.5 Å resolution (PDB access code

4MQS24) was obtained in the presence of a G-protein-mimic, the Nb39 nanobody. The latter

stabilizes the receptor in its active conformation.24 We kept the G-protein-mimic in our

simulations to avoid that the active state collapses to the inactive one, as observed in the

recent MD and accelerated MD simulations.41 The crystallographic structure contains some

missing loops in the intracellular region that we choose not to reconstruct for the lack of

a suitable template (>20% sequence identity) among other neuroreceptors. In particular,

residue C457 is missing; this cysteine is conserved among a huge number of GPCR and is

involved in palmitoylation, which can affect a huge number of function of neuroreceptors.42

In M2 receptor, the effect of palmitoylation was experimentally studied, showing that non-

palmitoylated cysteine does not show a different affinity for G-protein.43 More importantly

for our study, it was also shown that the absence of this cysteine does not affect the ligand

binding process in the M2 muscarinic receptor.44

The receptor was inserted into membrane bilayers following the orientation of the OPM

database.45 The lipids composition was chosen to represent that of a model neuronal mem-

brane46 (i.e., 48% cholesterol, 16% phosphatidylcholine (DPPC and POPC), 16% phos-

phatidylethanolamine (DOPE), 14% sphyngomielin (SM 18:0), 4% phosphatidylserine (DOPS)

and 2% phosphatidylinositol (SOPC)). This may be important for the overall fold of the

protein and ligand poses.32 The system was solvated with explicit water molecules and the

appropriate number of sodium and chloride ions were added to neutralize the total charge

and reproduce a physiological salt concentration of 150 mM, similar to the one used in affin-

ity experiments.24 The final systems contained ˜150.000 atoms and the dimensions of the

resulting simulation box was 112x113x149 Å3. The dimension along the Z axis was chosen

such that complete solvation can be achieved when the ligand dissociates from the M2 recep-
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tor. The simulations were performed using GROMACS 2016.4.47 The protein, membrane,

counterions, water were described by the AMBER ff14SB force field,48 the CHARMM-GUI49

and Slipids,50–53 Joung and Cheatham force fields,54 and TIP3P,55 respectively. The force

field of the ligand was the generalized AMBER force field (GAFF).56 The atomic charges,

after a geometry optimization on the cartesian coordinates (to avoid the lack of the dihedral

definition in the atoms involved in the triple covalent bond) were obtained by the restrained

electric potential fitting method (RESP)57 with molecular electric potentials obtained in the

HF/6-31G* level of theory. Quantum chemical calculations were performed with Gaussian

09.58 A cut-off distance of 12 Å was used for the van der Waals and short-range electrostatic

interactions and the long-range electrostatic interactions were computed with the particle-

mesh Ewald summation method59 using a grid point spacing of 1 Å. Long-range dispersion

corrections to the pressure and potential energy were considered.60

MD simulations

We first equilibrated the lipid tails. With all other atoms fixed, the lipid tails were energy

minimized for 1000 steps using the steepest descent algorithm and melted with an NVT

run for 0.5 ns at 310 K (37◦C). In a constant pressure run, we equilibrated the system to a

stable volume, fixing only the positions of the protein and the ligand. During this part of

the run, that lasted a total of 10 ns, we observed that after 5 ns the volume of the box was

fluctuating around its equilibrium value without any canonical drift. We then released the

protein restraints for further 0.5 ns keeping the pressure of 1 bar and physiological tempera-

ture (i.e. 310 K). After these minimization and equilibration procedures, the production MD

simulations were performed on the systems for 0.7 µs. The temperature was kept constant

using velocity rescaling thermostat61 with solvent, solute and membrane coupled to sepa-

rate heat baths with coupling constants of 0.5 ps. The pressure was maintained constant

with a semi-isotropic scheme, so that the pressure in the membrane plane was controlled

separately from the pressure in the membrane normal direction, and the Parrinello-Rahman
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barostat62,63 was applied with a reference pressure of 1 bar, a coupling constant of 2 ps, and

a compressibility of 4.5·10-5 bar-1.

rMD simulations

To study the unbinding path of our ligand we exploited Ratchet&Pawl MD20,21 (details in SI).

Saleh et al.15 used the projection along the direction normal to the membrane of the distance

between a conserved tryptophan and the ligand center of mass as CV in their metadynamics

simulation. Inspired by this, we defined as our ratcheting coordinate the projection along

the direction normal to the membrane of the distance between the heavy atoms of iperoxo

ligand and the center of mass of the binding pocket (residues TYR104, SER107, VAL111,

PHE195, TYR239). We fixed the bias factor to k=500 kJ/mol/nm and the final ratchet

coordinate to rfinal=3 nm. The rMD term was implemented via the PLUMED 2.3 plugin.64

HLDA dimensionality reduction

We made use of the HLDA technique to reduce the number of collective variables from 23

(the number of our local descriptors) to 3 (the number of the bound, intermediate, and

transient states minus one). We analyzed the unbiased MD simulation started from all the

rMD identified states obtaining the time series of the local descriptors. We then computed

averages and standard deviations of the local descriptors in all the states, and then we applied

HLDA protocol (details in SI). This dimensionality reduction approach has been used first

by Fisher29 and adapted to chemical physics problems.17,18

Metadynamics simulations

Here we use a variant of well-tempered metadynamics,11,12 called Funnel Metadynamics.23 In

this variant, the ligand is free to explore its conformational space inside the binding pocket,

but in the proximity of the interface between the solvent and the receptor a funnel-shaped
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potential is present. The potential confines the ligand in a small region of space outside

the receptor. The loss of degrees of freedom given by the funnel potential can be corrected

analytically23,65 (details in SI). We started the conic region of the funnel potential 13 Å

above the crystallographic position of the ligand, reaching the cylindrical part with radius

1 Å to 22 Å above the binding pocket. The cylindrical part of the funnel is 18 Å long to

ensure the absence of residual electrostatic interaction of the ligand with the membrane or

the receptor at its end (see Figure S5). We performed a Multiple-Walkers66 Well-Tempered

Metadynamics, implementing 8 different walkers, each one depositing a gaussian of height

1.2 kJ/mol every ps with a bias factor of γ=24 for a total simulation time of 1 µs (125 ns per

replica). Metadynamics was implemented via the PLUMED 2.3 plugin.64 All the obtained

free energy surfaces were reweighted a posteriori using the algorithm presented by Tiwary

and Parrinello.67
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